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Markov’s Chain and Joint Probability Distribution

MARKOYV CHAIN:

Introduction:

Vector:
A vector is an n-tuple of numbers u = (u;, u,, us, ... ... ,Up), where u; are called the
components of u.

If all the u; = 0, then u is called the zero vector.
Ifu = (uy, uy, us, ... .. ,U,) is a vector and k is a real number, then the product
ku = (kuy, ku,, kus, ... ... ,ku,,) is called scalar multiple of u by a scalar k.

Fixed vector or Fixed point:
If A is an n-square matrix (matrix of order n X n) and u is a vector with n components (u # 0)
such that uA =u, then u is called a fixed vector or fixed point of A.

In this case for any scalar k # 0, we have (ku)A = k(uA)=ku

Example:
2 1 . _ _ _ 2 1\ AN
Let (2 3) be a matrix and u = (2, -1) be a vector, then uA = (2,—1) (2 3) =(2,-1)=u

» u = (2,—1) is a fixed point of A.

2 1

Again, 2u=2(2,-1)=(4,-2) and (2u)A = (4, -2) (2 ;

) = (4,-2) = 2u.




Probability Vector:
A vector u = (ug, Uz, Uz, ... ... ,uy,) is called a probability vector if the components are non-

negative and their sumis 1. i.e.u; = 0 and YL, u; = 1.

Example:

1 1 1\ . e
1. u= (Z’ > 0, 5) is a probability vector

2. v=(§

1 1) . e 1. .
" 0, — " E) is not a probability vector. = — 218 negative.

3. w= G, %, 0, %) is not a probability vector. v sum is>1.
Stochastic matrix:
A square matrix P = (pj;) is called a stochastic matrix if each of its row is a probability vector.

Example:
0 1 0
1 1 1
1. A= 2 6 3 |isa stochastic matrix.
1 2
- -0
3 3
1 2
2 0 3 1 3
3 1 -1 4 4 . .
2. B= 7 3 2 and C = 1 1 |arenot stochastic matrices.
1 1 1 3 3
3 3 3
Theorems:

a; by ¢
l. LetA= (az b, C2> be a stochastic matrix and u = (uy, u,, uz) be a probability
az bz 3
vector, then uA 1is also a probability vector.

2. If A = (aj)) 1s a stochastic matrix of order n and u = (uy, uy, ....., u,) is a probability

vector, then uA is also a probability vector.

3. If A and B are stochastic matrices, then the product AB is also a stochastic matrix.
Therefore, in particular, all powers A" are stochastic matrices.

Regular Stochastic Matrix:
A stochastic matrix P is said to be regular if all the entries of some power P™ are positive.

Example:




0 1
1. The stochastic matrix A = ( 11 > is regular, since
2 2

<O 1)(0 1)
AP=[1 1)1 1)=
2 2 2 2

2. The stochastic matrix A = <

DlIRr NP
A lw N =

). We observe that all entries are positive.

0 1 0
1 ] is not regular, since A% = | 3 )
2

4

N R =
e

= O

1 0 1
A% = <Z 1), A = <1_5 _). we observe that every power A™ will have 1.
8 8 16 16

and 0 in the first row.

Theorem:
Let P be a regular stochastic matrix, then

(1) P has a unique fixed probability vector t and the components of t are all positive.

(ii) The sequence P, P?, P3,......., of powers of P approaches the matrix T whose rows
are each the fixed point t.

(iii) If p is any probability vector, then the sequence of vectors pP, pP?, pP3,.....
approaches to the fixed point t.

Note:
P" approaches T means that each entry of P" approaches the corresponding entry
of T, and pP" approaches t means that each component of pP" approaches the
corresponding components of t.

Problems:

1. Find the unique fixed probability vector of the regular stochastic matrix A =

NS W
NIk &

What matrix does A" approach?

Solution:
31
Given A = ‘1} ‘1* . Let t=(x, 1—x) be the probability vector such that t A =t
2 2
31
(x,l—x)(‘ll ‘1’ =(x,1—x).
2 2




%x+(1—x)(%)=x and ix+(%)(1—x)=l—x.

3x+2—2x=4x and x+2—2x =4 — 4x.

t= G, 1- %) = G' %) is the required probability vector.

. . . . 2
The matrix A" approaches the matrix T whose rows are each the fixed point t. i.e., T = (§' é)

0 1 0
2. Show that P = [ 0 0 1] is a regular stochastic matrix. Also find the associated
1/2 1/2 0

unique fixed probability vector.

010
Solution: GivenP= [0 0 1
1 1
- -0
2 2
0 1 0][0 1 O 9 9 1
pp= [0 0 1/{0 0 1f = [; 5 O
1 1 1 1
2z YUlz 7 0 0o 11
22 2 2 2 2
1 1
00 1o 10 2 2 Y
pP=pzp=|; 7z O[]0 O 1| = |o L %
11| |12 1 2 2
0 2 3z 2 11
4 4 2
1 1 11
2 2 9o 10 0 7 3
pP=pip=Jo X fjo o0 1f - |r 112
' 2 21 1 4 2 2 2
EREREI RER 111
4 4 2 Ly 2 2
0o = 1 111
2 2([0 1 0 4 4 2
s_pip = |22 if]ooo 1| = [t 1z
P P4 P A R I
11 1 [ 3 13 1
4 2 4 8 8 2

We observe that in P® all the entries are positive.

Thus P is a regular stochastic matrix.




Let t =(x, y, 1-x-y) be the unique fixed probability vector then tP =t

0 1 0
"'(x;)’:l_x_Y) 10 10 1 =(x:y:1_x_}’)
/2 /o O
1_x_y_ 1_x_y_ =1—x—
E—E—E—x , x+2 2 2—}’ > y_]- x=Yy
l—-x—y=2x , 2x+1—x—y=2y , 2y=1—x
y=1-3x x=3y—1
y=1-3@3y—1) x=3(%)-1
y=1—-9y+3 -'-x=§
10y = 4
4 _2
Y= 75

1 2 1 2 1 2 2\. . 1.
t= (g, = 1—-— —) = (E’ = E) is the unique fixed probability vector.

3. (1) Show that the vector u = (b, a) is a fixed point of the general 2 X 2 stochastic matrix
_(1—a a
h= ( b 1- b) '

(i1) Use the result of (i) to find the unique fixed probability vector of each of the

1 2 1
: cmer A — |33 _ |2 2 _ (0.7 0.3
following matrices: A—(i (3)), B = 21 and C_(O.S 0.2).
3 3
Solution:
. _(1—a a _
Given P—( b 1—b) and u=(b, a).

(i) uP = (b, a)(lga 2 )=(b-abtab ab+a—ab)=(b a)=u. - uP=u

. u is a fixed point of P.

(i1) GivenA=< )z(l—a ab)' -'-a=§and b =1.




Multiply u by 3. Then (3, 2) is the fixed point of A. Now 3 +2=5.

Divide this vector by 5. = (%, E) is the required unique fixed probability vector by A.

). azé and b=2.

Given B = :(1—a a
3

b 1-b

WINN |-
WIR N]|R

~u=(b, a) = (2, %) is a fixed point of B.
Multiply u by 6. Then (4, 3) is the fixed point of B. Now 4 +3 =7.
Divide this vector by 7 - G, %) is the required unique fixed probability vector by B.

0.7 0.3)'

08 02 ~a=0.3 and b=0.8.

Given C = (

~ u=(b, a) =(0.8, 0.3) = (1%, 110) is a fixed point of C.
Multiply u by 10. Then (8, 3) is the fixed point of C. Now 8§ +3 =11.

Divide this vector by 11. = (%, %) is the required unique fixed probability vector by ¢

4. Find the unique fixed probability vector of the regular stochastic matrix

o1
2 4 4

P = % 0 % . What matrix does P™ approach?
0 1 0

Solution:

Let t=(x,y,1—x—y) be the unique fixed probability vector then tP =t.

(X:yal_X_Y) :(X,y,l—X—Y).

ONIRN|R
_ O R
ONIRr D]

1 1 1 1 1
SXtIy=x, Zx+1—x—y=y, Zx+zy=1—x—y.
)+y=i€, X+ 4 —4x— 4y = 4y, X+ 2y =4 —4x — 4y.

y =X, 3x + 8y = 4, 5x + 6y = 4.




3x+8x=4. & 1lx=4 ox==. & y=—.

4 4 4 4 4

t= (—, —1—=- —) = (—, i, —) is the unique fixed probability vector.
11 11 11 11° 11° 11

The matrix P™ approaches the matrix T whose each row is the fixed point t where

4 2 3
1 11 11
3
To|4 & 3
11 11 11
42 2 3
11 11 11
0 1 0
1
.ShowthatP =| 6 2 3 |isaregular stochastic matrix. Also find the associated
0 2 1
3 3
unique fixed probability vector. What matrix does P™ approach?
Solution:
0 1 0
11
Given P=| 6 2 3
0 2 1
3 3
1 01 1
0 1 0,0 1 O s 7 3
1 1 1 1 1 1
P2=|s 3 3||ls 2 3| = = 2
2 1 2 1 12 36 6 |
0 2 \o 2 ) \1 5 /
3 3 3 3 5 5 3

We observe that in P? all the entries are positive.
Thus P is a regular stochastic matrix.

Let t=(x,y, ]1—x—y) be the unique fixed probability vector then tP =t.

0 1 0
111
(X: Y, 1_X_Y) 6 2 3 :(Xa yal_X_Y)
2 1
0o 2 :2
3 3
y_ y 2 _=x_2Zy_ Yy 2 _X_Y_q1_«_
=% X+2+3 3 ;= Y 3+ 3 =1—-x-y
— X 2_ Yy _ xX_7_ _ (2 x _ 7(6%) 2
y = 6x, 3+3 s Y 3 6 (3) 3 6 (3)




1 3 1 3 1 3

= (1—0, o 1- i E) = (1—0, o 110) is the unique fixed probability vector.

The matrix P" approaches the matrix T whose each row is the fixed point t where

3
10 5 10
1 3 3
T== = =
10 5 10
1 3 3
10 5 10

0 1
A the unique fixed probability vector of the regular stochastic matrix P = (1 /2 1 /2)

What matrix does P™ approach?

Solution: Let t = (x, 1-x ) be the probability vector such that tP =t

0 1
(x,l—x)<1/2 1/2>=(x,1—x)

Xy and x+--2=1-x
2 2 2 2
1—x=2x 2x+1—x=2—-2x
3x=1 3x=1
1 1
X == X ==
3 3

1 1 1 2). . .
Lt= (5' 1- 5) = (5' 5) is the unique fixed probability vector.

The matrix P™ approaches the matrix T whose each row is the fixed point t where T =

(7 %)
1/3 2/3 ’

HOME WORK
1. Find the associated unique fixed probability vector of the regular stochastic matrix
01 0
P = 9 (1) 1 |. What matrix does P" approach?
- -0
2 2

2. Find the unique fixed probability vector for the regular stochastic matrix

oONI=m O
_N AW
S O »Ir




0.5 0.25 0.25
3. Show that P = [0.5 0 0.5 ] is a regular stochastic matrix. Also find the associated
0 1 0
unique fixed probability vector.

Markov Chains:
Consider a sequence of trials (experiments) whose outcomes, say X;, X;, X3 ........ satisfy the
following two properties:

(i) Each outcomes belongs to a finite set of outcomes {a;, ay, ... ... am } called the state space of
the system. a; is called a state.

(11) The outcome of any trial depends at most upon the outcome of the immediately preceding
trial and not upon any other previous outcome; with each pair of states (aj, a;), there is given
the probability pj; that a; occurs immediately after a; occurs.

Such a stochastic process is called a (finite) Markov chain.

The number pj; are called the transition probabilities. pj;'s can be arranged in a matrix as

p11 p12 sas w sws wws wEmow plm
pzl p22 EEE E mEs ww o wwwow pZm
P=1] i is called the transition matrix.
Pmi Pm2 =+ v v e+« Pmm
Thus with each state a; there corresponds the i™ row (i1, Pigs oo o , Pim) Of the transition
matrix P.
If the system is in state a;, then the i row (pi1, Piz, wor - , Pim) Tepresents the probabilities of

all possible outcomes of the next trial and so it is a probability vector. Thus the transition matrix
P of a Markov chain is a stochastic matrix.

Higher transition probabilities:
The entry pj; in the transition matrix P of a Markov chain is the probability that the system

changes from the state a; to the state a; in one step (a; — a;). Similarly, the probability
denoted by pj; (1) that the system changes from the state a; to the state aj in exactly n steps.

e, (aj > ay, 2 ag, > oAy, — aj).

Theorem:
Let P be the transition matrix of a Markov chain process, then the n-step transition
matrix is equal to the n'! power of P. i.e., P™ = P7,

NOTE:
1. Atsome arbitrary time, the probability that the system is in state a; is p;. We denote




these probabilities by the probability vector P = (P4, P,, ... ... , Pm) which is called the
probability distribution of the system at that time.

In particular, let P@ = (P;©, p,©@ . P.©) denote the initial probability
distribution, then P™ = (P, p,®™ . P.™) denote the n™ step probability
distribution. i.e., the probability after the first n steps.

2. p(l) = p(o)P’ p(z) = p(l)P = p(o)PZ' p(3) = p(Z)P = p(O)P3‘ e _’p(n) = p(O)Pn.

Stationary Distribution of Regular Markov chains:
Theorem:

If the transition matrix P of a Markov chain is regular, then in the long run, the probability
that the state a; occurs in approximately equal to the component t; of the unique fixed
probability vector t of P.

Stationary distribution or steady state:

Every sequence of probability distribution approaches the fixed probability vector t of P
called the stationary distribution or steady state of the Markov chain where P is the transition
matrix of the Markov chain.

Problems:

Men the transition matrix P = (

1 2 . ..
p® = (5, 5). Define and find (i) p%2), (i) p®, (iii) p$¥.

N ==

0
1) with initial probability distribution
2

(3)

Solution:

(1) pgi) is the probability of moving from state a, to state a; in 3 steps and is obtained from

)

(i) p® is the probability distribution of the system after 3 steps.

P =ror= (91 2)=(3)

=0 = (5. 3)(

the 3-step transition matrix P3

1 0\/1 O 1 0
Now, P?=(1 1](1 1]=[3 1)P®=P?P=
2 2 ) 4 4

pg? = entry of the second row first column of P3 = g

AW
DR O
N | =
NIRr O

N——
Il
~

01 =

ol O
N———




p® =p@p = (z %) (1 2) - (% 1_12)

2 2

- = 12’ 12

Otherwise, p® = p©p? = (2, 2) <} 9) (2 1)
8 8

(i11) pg3) is the probability that the process is in the start a, after 3 steps. i.e. the second

component of p&. = p,® = 1_12 .
1 1
0 ;7 3
2. Given the transition matrix P = | 1 1 | and the initial probability distribution
2 2
010

p@ = (2, 0,3). Find () p$3) and pZ. (i) p® and pS”. (i) the vector that

p»P™ approaches, (iv) the matrix that P™ approaches.

Solution:
1 3
1 1 1 1 - 20
: z_(l)iz ?fz_iilw @ _1 @ _
@ Po=11 1 ol X ol=]|7 35 21| P3; =5 and p;3 =0.
) 2 2 1 /
0 1 0 0 1 O EEO
i%ovi‘)\ ——\
. 4 _p2zp2_|1 1 1 11 1]1_|5 2 1t
(ll)P_P'P_424 4 2 47 |16 16 8
110/110/ Los 1/
2 2 2 2 4 8 8
1 2 3
4 16 16
@ — ,p4s — (2 N\ 2 1)t 72t
p ppP (3’ 0, 3) 16 16 8 (4' 12’ 6)'
1 5 1
2 8 5/
4 1
ps? ==

(iii) p@P™ approaches the unique fixed probability vector t of P.

Let t=(x,y, 1 —x — y) be the fixed point of P then tP =t.

"‘(x! y:]-_x_y) :(x' y,l—x—y).

oONlim O
R NIRNR
O O NIR




Y — ry? —x—v = o1y —
y =2x , xX+y+2-—-2x—-2y=2y , X=2-=2x—2y
2
y=2(;) 2—x=3y 3x =2 —2y
.'.y=% 2 —x = 3(2x)
2=7x
2
X =z
7

. _ (2 4 2 4\ (2 4 1
~t= ) 1—-—-)= P
77 7 7 777

<. p(@P™ approaches the unique fixed probability vector t = (%, %, %)

(iv) P™ approaches the matrix T whose rows are each the fixed probability vector of P.

|
)

Aan either drives his car or catches a train to work each day. Suppose he never goes

by train two days in a row, but if he drives to work, then the next day he is just as likely
to drive again as he is to travel by train. Find the transition matrix for the chain of the
mode of transport he uses. If he drives on the first day of work, find the probability that

(1) car is used (i1) train is used, on the fifth day (iii) In long run, how often does he take
train or drive to work.

= P™ approaches

NI
NIA NN
NIk NIk R

Solution:
The state space of the system {t(train), d(drive)}. This stochastic process is a Markov chain since

the outcome on any day depends only on what happened the preceding day. The transition matrix
t d

o=y

t/0 1
of the Markov chainis P = e .

2 2

(O 1)(0 1)
=PP=PP={1 1)(1 1)=
2 2 2 2

BlRrNR
AW N R




1 1 1 1 3 5
. P4 _p2p2 |2 2 2 2)|_1] 8 8
~PT =P P = 1 3 1 3]~ 1|5 11
4 4 4 4 16 16

Suppose the man drives his car on the first day of work, the initial probability distribution is

p©@ = (0,1). To find the probability on the fifth day, i.c., after 4 days, we take

U1 o |w

5
p® = p@p*4, . p® = p@p* =(0,1) 2= (1%, %) is the probability distribution of

16 16
the mode of the transport on fifth day. -~ On the fifth day,

(i) The probability that he used the car ===

(i1) The probability that he used the train = 1% .

(ii1) Let t = (x, 1— x ) be the probability vector such that t P =t.

1

1
2

0
(Xrl _X) (l

=(x1-x). - S-X—x and x+--2=1-x
2 2 2 2 2

1—x=2x and 2x+1—x=2-2x.
3x=1and 3x=1. - X=§.
1 1 1 2
t=(G. 1-3)=0G 3)
2

In the long run, P approaches the matrix T, each of its row is a unique fixed point t = G, E)'

n, he use the train % of the time and use the car % of the time.

hree boys A, B and C are throwing a ball to each other. A always throws the ball to B
and B always throws the ball to C, but C just as likely to throw the ball to B as to A. If C
was the first person to throw the ball, find the probabilities that for the fourth throw
(after three throws). (i) A has the ball, (ii) B has the ball, (iii) C has the ball, and

(iv) In long run how often does each throw the ball.

Solution:
We take the state space of the system as {A, B, C}.




A B C
4/0 1 0
~ The transition matrix of the Markov chainis P = B (1) (1) 1
c\z - O
2 2

Suppose C was the first person with the ball, the initial probability distribution is p® = (0,0, 1).
Then

0 1 0
pO=pP=00D(] 9 1= 3 0)
2 2
0 1 0
o epor= )88 203
2 2

01 0
(3) = ,@p = I 1\fo 0 1|=(r 1 1
L P_(O'Z'Z)ll()_(él-'él'z) OR
2 2

01 0,00 10, /001
p2=pp=(0 0 1)[0 0 1])=(5; 5 O
22 o/\2 L9 o 11

2 2 2 2 2 2

1 1

00 1\ 0 1 0 2 2 0

= = 0l[o 0 1 11
PP=pp=|3 3 =|l0 - -
1 1 2 2

o> =/\z z 9 {111

2 2 4 4 2

p® =p@p3 =(0,0,1)

BlRr O NI
ADRIRNIR N
o
—/
Il
~/~
|
—

Thus after three throws, the probability that A has the ball is % that B has the ball is % and C has
the ball is -.

ie, P =2 PP =7 and ¥ =

Lett=(x,y, 1 —x — y) be the unique fixed probability vector then tP =t.




0 10
B (x»y'l_x_}’) 0 0 1 =(x»y’1_x_}’)
11
2 2
ad Yy _ ——E——z = — —_
ST;T5=X X+ S5, y=1-x-y
l—-x—-y=2x, 2x+1—-x—y=2y, 2y =1-—x
~y=1-3x, x=3y-—1.
L y=1-3@y—1). =~ y=1-9y+3 = 10y=4 :y=—=2

| =

x=3(§)—1. X =

1 2 1 2 1 2 2
=5 1-3-9)=6G %3
In the long run, A will be thrown the ball % times. i.e., 20% of the time, B will be thrown

the ball % times. i.e., 40% of the time and C will be thrown the ball % times. i.e., 40% of
the time.
A student’s study habits are as follows. If he studies one night, he is 70% sure not to

study the next night. On the other hand, if he does not study one night, he is 60% sure
not to study the next night as well. In the long run, how often does he study?

Solution: S T
. . . o ... o 85703 0.7
The state space is {S(studying), T(not studying)}. The transition matrix is P = T ( 04 0 6)'

Let t be the unique fixed point given by t = (x, 1 — x), then t P =t.

, (03 0.7\ _ B
+ (B1=x) (0.4 0.6) =®1-%)
03x+04—-04x=x and 0.7x+0.6—0.6x=1—x.
0.4 4 4 4 4 7
04=11x. =~ x="== =+ t= (H' 1‘E) _ (H' H)-

= In the long run the student studies % of the time.

6. A psychologist makes the following assumptions concerning the behavior of mice
subjected to a particular feeding schedule. For any particular trial 80% of the mice
that went right in the previous experiment will go right in this trial, and 60% of those
mice that went left in the previous experiment will go right in this trial. If 50% went
right in the first trial, what would he predict for (1) the second trial, (i1) the third trial,




(111) the thousandth trial?

Solution: R L
. . . ... o _R08 02
The state space is {R(right), L(left)}. The transition matrix is P = L ( 0.6 0. 4).

Since 50% went right in the first trial, the initial probability vector is p® = (0.5, 0.5).

0.8 0.2

N () = (0 p —
(i) p® = p@p (0.5,0.5)(0_6 s

)=(07, 0.3)

In the second trial that 70% of the mice will go right and 30% will go left.

0.8 0.2

i @ = ,(Dp =
(i) p@ = pMp = (0.7, 0.3)(0_6 04

) = (0.74, 0.26)

~In the third trial he predict that 74% of the mice will go right and 26% will go left.

We assume that the probability distribution for the thousandth trial is essentially the stationary
distribution of the Markov chain. i.e., the unique fixed probability vector t of the transition
matrix P.

Let t=(x, 1 — x) be the fixed point of P then tP =t.

o (6, 1—x) (82 82) = (x,1—x).

08x+06—-06x=x and 02x+04—-04x=1—x.

0.6 = 0.8x
r=2=2 o e=(31-3=(2, 1) = (075, 029).

He predicts that in the thousandth trial, 75% of the mice will go to the right and 25% will
go to the left.

7. A salesman’s territory consists of three cities A, B and C. He never sells in the same city
on successive days. If he sells in city A, then the next day he sells in city B. However, if
he sells in either B or C, then the next day he is twice as likely to sell in city A as in the
other city. In the long run how often does he sell in each of the cities?

Solution:
The state space is {A, B, C}. The transition matrix of the Markov chain is




o

Il
O T
wivNwINn O :j>

Wik © ~ W
o wiro N

Lett=(x,y, 1 —x — y) be the unique fixed probability vector then tP =t.

0 1 0

2.9 1
oy, 1—x—y)| 3 3 |l=My,1—x—y).

2 1

- =0

3 3
2y 2 2X 2y_ l_f_z_ X— _ _
Sty =% xto—s—3=y, $=1-x—y.

w2y +2—-2x—-2y=3x, 3x+1—-x—y=3y, y=3-3x-—3y

2=5x. 2x+1=4y.
2 2 9
.x:E, o 2(§)+1=4y' A 4y=g. y=5

t=(3 2, 1-2-2)=(%, 2, 2) = (040, 045, 0.15).

In the long run he sells 40% of the time in city A, 45% of the time in city B and 15% of the
time in city C.

8. Two boys B; and B, and two girls G; and G, are throwing ball from one to the other.

Each boy throws the ball to the other boy with probability % and to each girl with

Probability i . On the other hand, each girl throws the ball to each boy with
probability % and never to the other girl. In the long run how often does each receive
the ball?

Solution:

The state space is {B;, By, G1, G, }. The transition matrix of the markov chain is

By B, Gi G,
0 3 1 3
Bll 1 1
B,z 0 37 3
P_
G|1 1
622200/
11 9 0
2 2



Highlight


Let u = (x,y, z,w) be the fixed vector of P then uP =u.

1 1 1
0 3 2 3
b0
~ oyzw)| ] = (x,y,z,w).
2 2 00
I 1 00
2 2
Yz o w_ Xy Z 4w XY _ XY _
2+2+2 X, 2+2+2 Vs 4+4 2 4+4 w.

sy+z+w=2x->(1), x+z4+w=2y->2), x+y=4z->(3), x+y=4w - (4).
B)—-—@l) =4z—4w=0=z=w. Set w=1. ~ z=1. Putin(l)and(2).
(1D)=y+2=2x. And (2)=x+2=2y.
y=2x—2. and x+2=22x-2).
y=22)—2 ad 3x=6. «~ y=2 and x=2.

u = (2,2,1,1) is the fixed vector. Now 2+2+1+1=6. . Divide this vector u by 6.

.t = (3, E, l, l) = (l, l, l, l) is the unique fixed probability vector of P.
6’ 6" 6 6 373" 6" 6

. In long run, each boy receives the ball % of the time and each girl % of the time.

9. A man’s smoking habits are as follows. If he smokes filter cigarettes one week, he
switches to non-filter cigarettes the next week with probability 0.2. On the other hand,
if he smokes non filter cigarettes one week there is a probability of 0.7 that he will

smoke non filter cigarettes the next week as well. In the long run how often does he
smoke filter cigarettes?

Solution: a b

The state space is {a(filter), b(non-filter)}. The transition matrix is P = Z (82 8;)

Let t=(x, 1 — x) be the fixed point of P, then tP =t.

w1008 82)= e

08x+03—-03x=x and 02x+0.7—0.7x=1—x.

05xr=03. + x=22=2=06. = t=(0.61-06)= (0.6 0.4).

In the long run, he smokes filter cigarettes 60% of the time.



Highlight


10. A gambler’s luck follows a pattern. If he wins a game, the probability of winning the
next game is 0.6. However if he loses a game, the probability of losing the nest game is
0.7. There is an even chance of gambler winning the first game. If so (i) What is the
probability of he winning the second game? (ii) What is the probability of he winning
the third game? (ii1) In the long run, how often he will win?

Solution: WL
‘ _ .. ..o _W0.8 0.2
The state space is {W(wins), L(lose)}. The transition matrix is P = L (0.3 0.7)-

=Y
Olwu-llw
=Y
OI\]U‘IIN

p® = (l l) = (0.5, 0.5). [ even chance of win].

2’ 2
32
00 =or=(9(3 2= )
10 10

. Probability of winning the second game is % .

|WU1|(AJ

2
5 | (87 113)
7 200’ 200

10 10

i) p@ =pWp = (2 1
(ii) p pP (20’ 20)

- Probability that he wins the third game is % .

(i11) Let t = (x, 1 — x) be the unique fixed probability vector then tP =t.

3 2
. 5 51 _
S xl=-x) 3 5 ]=0x1-x).
10 10
3x 3 3x 2x 7 7x
—t+——==x and —t+——-——=1-x.
5 10 10 5 10 10
3 7x 3 3 3 3 4
oz Lastoae=(21-2)=(22)
10 10 7 7 7 7’7

In the long run, he wins ; of the time.

11. Each year a man trades his car for a new car. If he has a Rover he trades it for a
Vauxhall. If he has a Vauxhall, he trades it for a Ford. However, if he has a Ford, he is
just as likely to trade it for a new Ford as to trade it for a Rover or a Vauxhall. In 2015
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he brought his first car which was a Ford. (i) Find the probability that he has a

(1) 2017 Ford, (i1) 2017 Rover, (ii1) 2018 Vauxhall, (iv) 2018 Ford, (v) In the long
run, how often will he have a Ford?

Solution:
The state space is {R(Rover), V(Vauxhall), F(Ford)}. The transition matrix of the Markov chain
R V

rR/0 1

iISP=V
F

Wik = O

wlrk O
wirkr o

The initial probability vector is p® = (0, 0,1).[Year 2015]

0 1 0

v o1 — a0 p — 0 0 1)_(r 11

P =p®P=00 10 0 1 = (5, 3,2)- [Year2016]
3 3 3
0 1 0

@ —,Wp (X1 IO 0 1)_(1 % %

. p@=pWP=(33,3) o0 = (5, %, %) [Year2017]
3 3 3
0 1 0

Cop® =p@p=(1 2 20 0 1| (L T 1°

©PTED P_(9‘ 9'9) 11 1 _(27’27’ 27)' [Year 2018]
3 3 3

. Probability that he has a

(i)2017 Fordis <. (ii) 2017 Roveris 5. (iii) 2018 Vauxhallis —. (iv)2018 Fordis — .

Lett=(x,y, 1 — x — y) be the unique fixed probability vector of P, then tP =t.

0 1 O
0 0 1
(x,y,l—x—y) 1 1 1 :(x!y11_x_y)
3 3 3
x x
——;—;—x, x+——§—§—y, y+-—-—= =1—-x-y

1—x—y=3x, 3x+1—x—y =23y, y=3-—3x—3y
y=1-—4x, 2x —4y=—-1. ~ 2x—4(1—-4x)=-1. - 18x =3




1 1 1 1 1 1 1
S S T
6" 3 6 3 6" 3 2

In the long run he have Ford car % of the time. i.e., 50% of the time.

12. For a Markov chain, the transition matrix is P =

Alw NI
DR N

distribution p(©® = (4 ) Find (i) p21, (ii) p12 , (i) p@, (iv) p

p®P™ approaches, (vi) the matrix P™ approaches.

Solution:
11
. _ 2 2
Given P = 301
4 4
1 1\ /1 1 5 3
— _ 2 2 2 2 _ 8 8
Pe=pP={5 1)l 1]=|s 7
4 4 4 4 16 16
(i) pSy == and (ii) p; =
5 3
@ —p2 _ (L 3)[ 8 8 |_ (37 27
(iif) p pp (4’ 4) S 7 (64’ 64)’
16 16
(v)p? =

e
(v) p®P™ approaches the unique fixed probability vector t of P

Let t = (x, 1 — x) be the fixed point of P then t P =t.

11
i 2 2| _
s (x,1—x) 3 1 =(x,1—x).
4 4
o Ep2 oy and E4c-Z=1-x
2 4 2 4 4

2x+3—-3x=4x. . 5x=3. :-x=§=0.6.
t =(0.6,1—-0.6) = (0.6, 0.4).

~ pP™ approaches the unique fixed probability vector t = (0.6, 0.4).

with initial probability

, (v) the vector




vi) P™ approaches the matrix T whose rows are each the fixed probability vector of P.
pp

0.6 0.4
. n
= P™ approaches (O. 6 0 4)
o
13. For a Markov chain, the transition matrixis P = 1 0 0 | with initial probability
1 1 1
4 2 4
distribution p(o):(%’% 0) Find (i) pgg), (ii) ng), (iii) p®@, (iv) p
Solution:
1 9 12
2 2
Given P=(1 0 O
111
4 2 4
3 1 3
>0 2\/> 0 = 8 1 8
2 2 2 2 1 1
P2=P.P=100100=505
11 1yj\1 1t 1 1 1 3
4 2 4/ \4 2 4 % 5 1c
2
) pg=; () pi3=
3 13
(8 4 8
i) p@ = p@p2 — (1 1 1 (2 1 Z
(i) p* =pTp _(2’ 2’ 0) 2 0 2 _(16’ 8’ 16)
no1r 3
16 8 16
@) _
(iv) p; o
HOME WORK:

1. The transition probability matrix of a Markov chain is given by P =

S wirkr o

winvnwinNn O

1
0
1
3
and the initial probability distribution is p® = (;, ; O) Find (i) p13) and pg?,

(i) p® and p?,
P™ approaches.

(iii) the vector that p(®) P approaches, (iv) the matrix that

0 1
2. The transition probability matrix of a Markov chain is given by P :[ 11 l and initial

2 2




probability distribution is p© = |~ 3| find the following pS?, pi3, p® and p{®.

3. A company executive changes his car every year. If he has a car of make A he changes
over to a of make B. If he has a car of make B he changes over to a car of make C. If he
has a car of make C, he is just as likely to change over to a car make C,B or A. If he
had a car of make C in the year 2016 . Find the probability that he will have a car of
(1) make A in 2018 (i1) make C in 2018 (iii) make B in 2018 and (iv) make C in 2019.
In long run, how often will he have a car of make C?

JOINT PROBABILITY DISTRIBUTION:
Joint Probability distributions of two discrete random variables:

Let X and Y be two discrete random variables on a sample space S such that X =
{x1, %3, e .. xptand Y = {y1, ¥, ... ... Yn} and

X XY ={(x1,y1), (1, ¥2)s e ee (X1, Ym), (X2, V1) oo (X0, Y ) }. Then, the function h on X XY
defined by h(x;y;) = P(X =x;Y =y;) is called the joint distribution or joint probability
function of X and Y and is usually given in the form of a table.

X Y V1 Vo | e Vm Sum
X1 h(x1,y1) h(xy,¥2) | e h(x1, Yim) f(xy)
X2 h(x2,¥1) h(x%2,¥2) | oo h(X3, Vi) £(x,)
Xn h(xn, y1) [ E72% N I h(xn, Yim) f(x,)

Sum gy1) glvy) 9IVm)

Here h(xl-, y]-) is the probability of the ordered pair (xl-, yj).
The joint distribution h satisfies the conditions (i) h(x;, yj) > 0 and (i) Xj=1 X7zq h(x;, yj) =1.
Marginal distributions:

The function f(x;) and g(y;) are defined by f(x;) = XL, h(xl-,yj) and g(yj) =y, h(xi,yj)
are called the marginal distributions and are the individual distributions of X and Y respectively.

Constants of joint distribution:




Expectations:

If X and Y are two discrete random variables with the joint distribution h(xi,yj), then the
expectations of X and Y are the means of X and defined by by ux = E[X] = X7, x; f(x;) and
uy = E[Y] = X7, v ().

Variance:
Variance of X and Y are defined by

ox = var(X) = N, 0 — u)? f(x) = Dty xf f(x) — g = E[X?] — {E[X]}
where E[X?] = ¥, x? f(x;) and

of = var(Y) = X7 (v — 1tv)” 90) = Zia v} gO) — 1 = E[Y?] — {E[Y]}?
where E[Y?] = XL, v7 g(y)).

Standard deviation:
Standard deviation of X and Y are defined by ox = y/var(X) and oy = /var(Y).

Covariance:
Covariance of X and Y is denoted by Cov(X,Y) and is defined by

Cov(X,Y) =% ; (i — ) (y; — uy)h(x:,y;) = E[(X — ) (Y — )] (o)
Cov(X,Y) = Xi; x;yih(x;,y;) —uxpty = E[X, Y] — ey, , where E[X, Y] = ¥; ; x;vih(x;, ;)

Correlation:

Correlation of X and Y is denoted by p(X,Y) and is defined by p(X,Y) = CovX.¥)

0x Oy )

Independent Random Variables:
Two random variables X and Y are said to be independent if

P(X =x,Y =y;) =P(X =x).P(Y = y)) i.e. h(x;,y;) = f(x)g ().

Problems;

and Y be two random variables with the following joint distribution

Find (1) the distributions of X and Y (i.e. Marginal distributions), (ii) Cov(X, Y), (iii) p(X,Y).
Also, (iv) Show that the random variables X and Y are independent.

Solution:




(1) Given Y
X 2 3 4 Sum

1 0.06 0.15 0.09 0.30
2 0.14 0.35 0.21 0.70
Sum | 0.20 0.50 0.30

~ Marginal distributions of X and Y are as follows

Distributionof X Distribution of Y
f(x) 0.30 0.70 gy 0.20 | 0.50 | 0.30

(i1) Mean u, = E[X] = Y x;f (x;) = 1(0.3) +2(0.7) = 1.7 and
uy = E[Y] =X y;9(y;)) =2(0.2) +3(0.5) +4(0.3) = 3.1

E[XY] = X% yih(xy;)

=(1)(2)(0.06) + (1)(3)(0.15) + (1)(4)(0.09) + (2)(2)(0.14) + (2)(3)(0.35) + (2)(4)(0.21)

E[XY] =527

Cov(X,Y) = E[XY] — o pty = 5.27 — 1.7(3.1) = 0.

(iii) 0,2 = var(X) = X x;2f (x;) — u,? = 12(0.3) + 22(0.7) — (1.7)? = 0.21.
- 6, = 0.4582.

o

Cov(X,Y)
fp(XY) =——"2=0
x0y

(iv) From the table we observe that h(xl-, yj) =f(xDg ) -

i.e. h(1,2) = 0.06 and f(1)g(2) = (0.3)(0.2) = 0.06 - h(1,2) = 1f(1)g(2), etc.
~ X and Y are independent.

NOTE:

If X and Y are independent random variables then

V2 =var(V) X y;2g(y;) — uy? = 22(0.2) 4+ 3%(0.5) + 4%(0.3) — (3.1)? = 0.49. -

= 0.7




(i) E[XY] = ECX)E(Y), (ii) Var(X+Y) = Var(X) + Var(Y), (iii) Cov(X,Y) = 0.

. Suppose X and Y have the following joint distribution

\ 3 2 4
X

1 0.1 0.2 0.2
3 0.3 0.1 0.1
Find (i) the distributions of X and Y, (ii) Cov(X, Y), (iii) p(X,Y), (iv) Are X and Y independent

random variables?

Solution:
(1) Given
\ 3 2 4 sum
X
1 0.1 0.2 0.2 0.5
3 0.3 0.1 0.1 0.5
Sum 0.4 0.3 0.3

~ Marginal distributions of X and Y are as follows

Distribution of X Distribution of Y
X = X 1 3 Y = Yj -3 2 4
f(xi) 0.5 0.5 6 1 0.3 0.3

ii] Mean p, = E[X] = ¥ x;f (x;) = 1(0.5) +3(0.5) =2
py = E[Y] =Xy;9(;) = (-3)(1) +2(0.3) + 4(0.3) = 0.6

E[XY] =X xiyih(x,y;)

= 1(=3)(0.1) + 1(2)(0.2) + 1(4)(0.2) + 3(=3)(0.3) + 3(2)(0.1) + 3(4)(0.1)
E[XY] = 0.
# Cov(X,Y) = E[XY] — ety =0— 1.2 = —1.2
(iii) 0y = T2 2f () — e = 12(0.5) + 32(0.5) =22 = 1. =~ ox = 1.
0,2 =X y;29(y;) — 1y? = (=3)%(1) + 22(0.3) + 4%(0.3) — (0.6)> = 9.24. - o, = 3.0397

Covxy) . _(12) _ 39~ —04
oxoy  (1)(3.0397) ' o

o p(X, Y) =




(iv) We observe that h(xl-, y]-) = f(x)g(y)) 1.e. h(1,-3) = 0.1 and f(1)g(-3) = (0.5)(0.4) = 0.2
=~ h(1,-3) = f(1)g(-3)
~ X and Y are not independent.

3. Consider the following joint distribution of X and Y:

Y -4 2 7 sum
X L

1 1 1 1 1
8 4 8 2
5 1 1 1 1
4 8 8 2

sum E § 1

8 8 4

ﬁd (1) E(X) and E(Y), (i1) Cov(X,Y), (iii) oy , oy and p(X,Y).

Solution:
From the given table Marginal distributions of X and Y are as follows:

Distribution of X Distribution of Y
X=x 1 5 Y =y; -4 2 7
Flx) 1 1 90y 3 3 1
2 2 8 8 4

(i) Mean p, = E[X] = R, () = 1(3) +5(3) = 3
w=EY1=%y90) =0 () +2()+7(3) =1
(ii) E[XY] = X; % yih(xi, ;)
=10 (5) +1@ () + 10 (5) + 560 (5) +5@ (5) + 50 (5) =3
Cov(X,Y) = E[XY] — weity = %— 3(1) = —1.5
(iii) 0,2 = Lo f () — p? = 12 () + 57 (%) —32=4 .g.=2.

02 =2y29() —m? = 2 (3)+ 2 (3)+ 72 () - 2 =2 so, =433




~pX,Y) =

Cov(X,Y)  (-1.5)

X

T (2)(433)

=-0.173

J Consider the following joint distribution of X and Y:

Y -2 -1 4 5 sum
X
1 0.1 0.2 0 0.3 0.6
2 0.2 0.1 0.1 0 04
sum 0.3 0.3 0.1 0.3

Find (i) E(X) and E(Y), (ii) Cov(X,Y), (iii) oy , oy and p(X,Y)

Soln: From the given table Marginal distributions of X and Y are as follows:

Distribution of X Distribution of Y
X; 1 2 yj 2 -1 4 5
f(x) 0.6 0.4 g 0.3 0.3 0.1 0.3

(i) Mean p, = E[X] = X x;f (%) = 1(0.6) + 2(0.4) = 1.4

py = E[Y] = Xy;9(y;) = (=2)(0.3) + (=1)(0.3) + 4(0.1) + 5(0.3) = 1
(i) E[XY] = X; jx; yih(xi, ;)

= 1(-2)(0.1) + 1(=1)(0.2) + 1(4)(0) + 1(5)(0.3) + 2(—2)(0.2) + 2(—1)(0.1)
+2(4)(0.1) + 2(5)(0).

E[XY]=0.9.
Cov(X,Y) = E[XY] — uyuy = (0.9) — (1.4)(1) = —0.5
(i) 0,2 = X x;2f () — puy? = 12(0.6) + 22(0.4) — (1.4)2 = 0.24. - 0y = 0.49.
0,2 =Y y;29(y;) — 1y? = (=2)2(0.3) + (=1)%(0.3) + 42(0.1) + 52(0.3) — (1)? = 9.6.
» 0y = 3.09

Cov(X,Y)  (=05) B
o0,  (0.49)(3.09) 0.33

~pX,Y) =

5. Let X and Y are independent variables with the following distributions:




Distribution of X
X; 1 2
f(x) 0.6 0.4

Find the joint distribution h of X and Y.

Solution:

Given Marginal distributions of X and Y are:

Distribution of X
X; 1 2
f(x) 0.6 04

Distribution of Y

Yj 5 10 15
g;) 0.2 0.5 0.3
Distribution of Y
g(yj) 0.2 0.5 0.3

Since X and Y are independent, we have h(xi, yj) =f(x)g))

= h(1,5) = f(1)g(5) = (0.6)(0.2) = 0.12

h(1,10) = f(1)g(10) = (0.6)(0.5) = 0.30

h(1,15) = f(1)g(15) = (0.6)(0.3) = 0.18

h(2,5) = f(2)g(5) = (0.4)(0.2) = 0.80

h(2,10) = f(2)g(10) = (0.4)(0.5) = 0.20

h(2,15) = f(2)g(15) = (0.4)(0.3) = 0.12

=~ The joint distribution h of X and Y is

5 10 15 sum
X
0.12 | 0.30 0.18 0.6
0.08 | 0.20 0.12 0.4
Sum 0.20 | 0.50 0.30

/ Suppose X and Y are independent random variables with the following respective distributions

Find the joint distribution of X and Y, and verify that Cov(X,Y) = 0.

X

f )

0.7

0.3

Yj

9g;)

0.3

0.5

0.2




Solution:
Given Marginal distributions of X and Y are:

Distribution of X Distribution of Y
X; 1 2 Vj -2 5 8
f(x; 0.7 0.3 g(yj) 0.3 0.5 0.2

Since X and Y are independent, we have h(x;,y;) = f(x)g ;)
« h(1,-2) = f(1)g(-2) = (0.7)(0.3) = 0.21

h(1,5) = f(1)g(5) = (0.7)(0.5) = 0.35

h(1,8) = f(1)g(8) = (0.7)(0.2) = 0.14

h(2,-2) = f(2)g(-2) = (0.3)(0.3) = 0.09

h(2,5) = f(2)g(5) = (0.3)(0.5) = 0.15

h(2,8) = f(2)g(8) = (0.3)(0.2) = 0.06

= The joint distribution of X and Y

X 2 5 8 sum
X
1 021 | 035 | 0.14 0.7
2 0.09 | 0.15 | 0.06 0.3
Sum 03 | 05 0.2

Mean u, = E[X] = ¥ x;f (x;) = 1(0.7) + 2(0.3) = 1.3
py = E[Y]1 =X v;9(y;) = (—2)(0.3) + 5(0.5) + 8(0.2) = 3.5
E[XY] =Y ;% y;h(xi, y;)

= 1(-2)(0.21) + 1(5)(0.35) + 1(8)(0.14) + 2(—2)(0.09) + 2(5)(0.15) + 2(8)(0.06)
~ E[XY] = 4.55
« Cov(X,Y) = E[XY] — ey = (4.55) — (1.3)(3.5) = 0.

7. Let X be a random variable with the following distribution and Y is defined to be X?:

X; -2 -1 1 2
f(x) 1 1 1 1
4 4 4 4




Determine (1) the distribution g of Y, (i1) the joint distribution h of X and Y, (ii1) Cov (X,Y) and
p(X,Y).

Solution:
1) Given
@ X; -2 —1 1 2
fe) | 1 1 1 1
4 4 4 4

Let Y = X?,then Y =4 when X=—2o0r2and Y =1 when X=—1 or I.

~ The random variable Y the values 1 and 4.
~g()=P(Y=1)=PX=-lorX=1)=PX=-1)+PX=1)=;+7=-.

g(4)=P(Y=4)=P(X=—20rX=2)=P(X=—2)+p(x:2):%+i=§,

. The distribution of g on Y is Y] 1

g;)

N -
N| | &

(i1) The joint distribution h of X and Y is as follows:
Now, S = {(-2,4), (-1,1), (1,1), (2,4)} and h(x;, y;) = P(X = x;,Y = y)).
when X = —2,Y = X? = 4.
Zh(=21)=P(X =-2Y=1)=0.(v whenX = =2,Y # 1).
and h(—=2,4) = P(X = =2,Y = 4) = i
whenX=—-1,Y=X?=1.
~h(-1,1) =P(X=-1Y =1) =7 and h(-14) =P(X = -1,Y = 4) = 0.
whenX=1,Y=X?>=1.
1

~h(LD)=PX=1Y=1) == and h(1,4) =P(X =1,Y =4) = 0.

T4

when X = 2,Y = X? = 4.




“h(1D=PX=2Y=1)=0 and h(24) =P(X =2,Y = 4) =i.

Y 1 4 sum
X
-2 0 1 1
4
-1 1 0 1
4 4
1 1 0 1
4 4
2 0 1 1
4 4
sum l l
2 2

(i) e = EX] = Zxif () = (-2 (3) + (D () +1(5) +2(5) = 0.
wr = EY1=Sy90) = 1(5) +4(3) =3

E[XY] = %% yih(x9;) =0 = 2=+ 047+ 0+0+2=0.

. Cov(X,Y) = E[XY] — ety = 0 — (0) (g) = 0.

Cov(X)Y)
Ox0y

0.

S p(X‘ Y) =

8. A fair coin is tossed three times. Let X denote 0 and 1 according as a head or tail occurs on the
first toss, and let Y denote the number of heads which occur. Determine (i) the distribution of X
and Y, (i1) the joint distribution h of X and Y, (iii) Cov (X, Y).

Solution:
(1) The sample space S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.
Let X = {0, 1} where 0 for head and 1 for tail on the first toss.

Let Y = number of heads i.e. Y = {0,1,2,3}.

“f@=PX=0)=2,fD)=PX=1)=;




g =P =0)==,gD)=PF¥=1=:,

9@ =P =2)=2,9B3) =P =3) ==

~ The distributions of X and Y are:

Distribution of X Distribution of Y
. 1 1
f(x) 1 1 g | 1 3|3 1
2 2 8 8 8 8

(ii) The joint distribution h of X and Y is given by h(x;,y;) = P(X = x;,Y = y;).
h(0, 0) = P(X=0, Y=0) = 0

h(0, 1) =P(X=0, Y=1) =

® | =

h(0,2) = P(X=0, Y=2) = =

h(0, 3) = P(X=0, Y=3)

Il
|+

h(1, 0) = P(X=1, Y=0)

Il
|+~

h(1, 1) =P(X=1, Y=1) =i

h(1,2)=P(X=1, Y=2) =

| =

h(1, 3) =P(X=1, Y=3)=0

X 0 1 2 3 sum
X
0 0 1 1 1 1
8 4 8 2
1 1 1 1 0 1
8 4 8 2
sum 1 3 3 1
8 8 8 8
(iii) px = E[X] = T f () = 0(5) +1(5) =3




=B =S50 =0 )+ 1) +2()+3() =

N |-

1 1/3 1
Cov(X,Y) = E[XY] — peuty = __5(5) =1

/.Determine 1) Marginal distribution, ii) Covariance between the discrete random variables X
and Y, using the joint probability distribution:

Y 3 4 5 sum
X

2 1 1 1 1
6 6 6 2
5 1 1 1 1
12 12 12 4
7 1 1 1 1
12 12 12 4

sum 1 1 1

3 3 3

Solution:

(1) Given Marginal distributions of X and Y are:

Distribution of X Distribution of Y
X; 2 5 7 Vi 3 4 5
fx) 1 1 1 gop | 1T [ 1 |1
2 4 4 3 3 3

(ii)Meanux=E[X]Zinf(xi)zz(%)+SG)+7G):4
by = ELY] = Sy00p =3(3) +4(3) +5(5) = 4.
E[XY] =X, ;x; }’jh(xi’yj)

=@ () +@Q@WE) + @G () + OO () +EO@(S) + GG (5) +
MG (5)+ D@ () + DG ()

E[XY] = 16.




Cov(X,Y) = E[XY] — pytty = 16 —4(4) = 0.
HOME WORK:

1. The Joint distribution of two random variables X and Y is as follows

Y 0 1 2 3
X

0 0 1 2 1

8 8 8

1 1 2 1 0
8 8 8

Compute the following (i) E(X) and E(Y), (ii) E(XY), (iii) o, and gy, (iv) cov(X,Y), (v) p(X, ).

2. The Joint Probability distribution of two random variables X and Y is given by the following
table:

Y -2 5 8
X

1 0.21 0.35 0.14
2 0.09 0.15 0.06

Determine the Marginal distribution of X and Y. Also find (i) E(X) and E(Y), (i1) E(XY), (ii1)
Standard deviation of X and Y, (iv) Covariance of X and Y, (v) Correlation of X and Y.




