BCS304 - DATA STRUCTURES AND APPLICATIONS
Module-5

HASHING: Introduction, Static Hashing, Dynamic Hashing, PRIORITY QUEUES: Single and double ended Priority
Queues, Leftist Trees, INTRODUCTION TO EFFICIENT BINARY SEARCH TREES: Optimal Binary Search Trees

Hashing
e Hashing is an effective way to store and retrieve data in some data structure.

e Hashing technique is designed to use a special function called the hash function which is used to
map a given value with a particular key for faster access of elements.

e The efficiency of mapping depends on the efficiency of the hash function used.

Types of Hashing Techniques:
a. Static Hashing b. Dynamic Hashing
a. Static Hashing:
e Is a hashing technique in which the table(bucket) size remains the same (Fixed during
compilation time) is called static hashing?

e Various techniques of static hashing are linear probing and chaining

e Asthe size 1s fixed, this type of hashing consist handling overflow of elements (Collision)
efficiently.

Example:
Elements to be stored: 24, 93, 45
H(24)=24%10=4
H(93)=93% 10=3
H(45)=45%10=5

ok

-2

4
o
4

I
-2
=

il
e
Lh

oo -1

b. Dynamic Hashing:

e This 1s an hashing technique in which the bucket(table) size 1s not fixed. It can grow or
shrink according to the increase or decrease of records.

e Typical example of dynamic hashing is Extensible hashing.

e Extensible hashing is a technique which handles a large amount of data. The data to be
placed in the hash table is by extracting certain number of bits.

e In extensible hashing referring to the size of directory the elements are to be placed in
buckets.

Example:
To insert 1.4.5.7.8.10.

Assume each page (bucket) can hold 2 data entries

Directory 00 01 10 11
Bucket 100 001 1010 111
1000 101

Overflow Handling (Collision Resolution Techniques):

e The phenomenon of two or more keys being hashed to the same location of the hash table
(Fixed size table) 1s called collision.

Example:
The data elements to be placed: 44, 73, 17. 77
Hash function be K%]10

0
1
2

L]
~1
5]

.
.
=

n

17

Ooooo =1

e If we try to place 77 in the hash table, we get the hash value 7 and and index 7 already 17
is placed. This situation is called collision.

e The various technique using which collision can be avoided are:
1. Open Addressing (Linear Probing)

2. Chaining

1. Open Addressing (Linear Probing)

e Here, it involves static hashing, hash table size is fixed. In such a atble. collision can be
avoided by finding another unoccupied location in the array.

e The collision can be avoided using Linear Probing
Example:
Let size of hash table = 100. Let the hash function: h(k)=k % m. m is the size of hash table.
Items to be inserted: 1234, 2548, 3256, 1299, 1298, 1398

h (1234) =1234%100 =34
h (2548) =2548%100 =48
h (3256) =3256%100 =56
h (1299) =1299%100 =99
h (1298) =1298%100 =98
h (1398) =1398%100 =98 Collision
0j1(2]...... 34 | 48 | 56 | 98 99
1234 2548 3256 1298 | 1299

e Collision is detected while inserting 1398 into 98" position. To overcome this linear probing
may be used. In linear probing, it checks for the next available(empty) location. So, the next
available location is 0.

0 |1]2]...... 34 |...... 48 |...... 56 | 98 99
1398 1234 2548 3256 1298 | 1299

2. Chaining Method:
e Chaining technique avoids collision using an array of liked lists (run time).

e If more than one key has same hash value, then all the keys will be inserted at the end of
the list (insert rear) one by one and thus collision is avoided.

Example:

Construct a hash table of size and store the following words: like, a, tree, you, first, a, place,
o

Let H(str)=Po+P1+P2+.... .. +Pn1: where P is position of letter in English alphabet series.
Then calculate the hash address = Sum % 5

H(like)=12+9+ 11 +5=37%5=2
H(a) =1 %5 =1

H(tree) =20+ 18+5+5=48%5=3
H(you)=25+15+21=61%5=1
H(first)=6+9+ 18 +19+20=72%5=2
H(@)=1%5=1
H(place)=16+12+1+3+5=37%5=2
H(to)=20+15=35%5=0

0 » to | \0

1 a * vou | \0

2 like > first —1 | place \0
3 > tree | \0

4| \0

Address Calculation Sort
e Uses Hashing technique.

e The hash function should have the property that x1 < x2. the hash(x1) < hash(x2). The function
which exhibits this property is called order processing or Non-decreasing hashing function.

Example: 25. 57. 48, 37, 12, 92, 86. 33

¢ Here the largest number is 92, so we divide all the elements using the hash function h(k) =k/10.
H((25)=25/10=2
H(57)=57/10=5
H (48)=48 /10=4
H((37)=37/10
H(12)=12/10=1
H(©92)=92/10=9
H(86)=86/10=8
H (33)=33/10=3

-
2

00

1 — 1 * 12 \0

2 — T *>| 25 \0

3 — T >33 > 37 \0
4 — 1> 48 \0

5 ——»| 57 \0

610

710

8 —7T ” &6 \0

9 — T "9 \0

e Here 3 which is repeated. It is inserted in 3* sub file only, but must be checked with the existing

elements for its proper position in this sub file.\

Priority Queues
8 Tpriority queue is

= Collection of zero or more elements with priority
= A min priority queue is

« Find the element with minimum priority

« Then, Remove the element
= A max priority queue is

« Find the element with maximum priority

=« Then, Remove the element

= Priority queue is a conceptual queue where the output element has a
certain property (i.e., priority)

The ADT MaxPriorityQueue

AbstractDataType MaxPriorityQueue {

instances
finite collection of elements, each has a priority
operations
isEmpty() : return true if the queue is empty
size() : return number of elements in the queue
getMax() : return element with maximum priority
put(x) : insert the element x into the queue

removeMax() : remove the element with largest priority
from the queue and return this element;

Linear Lists for Priority Queue
I

= Suppose Linear List for max priority queue with n elements
= Unordered linear list for a max queue
« Array

» Insert() or Put() : ©6(1) // put the new element the right end of the array
« RemoveMax(): ©(n) // find the max among n elements

1535652017801245 2 4

s Linked List

= Insert() or Put() : ©(1) // put the new element at the front of the chain
= RemoveMax(): B(n) // find the max among n elements

firstNode\

BHEE BEBE

“Ordered linear list for a max queue

»« Array

= location(i) = i (i.e., array-based) where the max element is located in the last
address (i.e., the nondecreasing order)

= Insert() or Put() : B(n)
= RemoveMax() :6(1)

2 4 13 20 80 90

« Linked List

= chain (i.e., linked) where the max element is located in the head of chain (i.e., the
nonincreasing order)

= Insert() or Put() : ©(n)
= RemoveMax() :6(1)

ﬁrstNode\
ol N 2| o
Max Tree & Max Heap

= A max tree is a tree in which the value in each node is greater than
or equal to those in its children

)@) ﬁ) (30)
& w & &
(10) (8) (6) (3)

(a) (b) (c)

Figure 13.1 Max trees

= A max heapis
» A max tree that is also a complete binary tree
« Figure 13.1(b) : not CBT, so not max heap

Min Tree & Min Heap

= A min tree is a tree in which the value in each node is less than or
equal to those in its children

@ (3) (6) 50)
@ (b) (©)

Figure 13.2 Min trees

= Aminheapis
= A min tree that is also a complete binary tree
» Figure 13.2(b) : not CBT, so not min heap

= Heap is a complete binary tree
= A heap with n elements has height | log,(n+1) |

= put(): O0(height) = 0(log n)
= |ncrease array size if necessary

= Find place for the new element
= [he new element is located as a leaf
= |hen moves up the tree for finding home

= removeMax(): O(height) = 0(log n)
= Remove heap[1], so the root is empty
= Move the last element in the heap to the root
= Reheapify

Put into Max Heap

= When an element is added to this
_ _ heap, the location for a new element
Max heap with five elements is the red zone

SF®

= Suppose the element to be inserted has
value 1, the following placement is fine

8 Shppose the element to be
inserted has value 5

*
Suppose the element to

be inserted has value 21
= The elements 2 and 5 must be swapped

for maintaining the heap property

S,

The new element 21 will find its Finally the new element 21 goes

position by continuous swapping to the top

with the existing elements for
maintaining the heap property

so0 ¢

removeMax() from a MaxHeap

Step 1: Exchange- the root’s kcs} with the last key K of the heap.
Step 2: Decrease the heap’s size by |
Step 3: “Heapify™ the smaller tree.

° STEP 1 0
OB OISO O

° STEP 3 °
— R O BN O
OO

MaxHeap Initialization

= Steps
= Allocate the elements in an array
= Form a complete binary tree
= In the array, start with the rightmost node having a child
= node number = n/2
= Fix the heap in the node

= Reverse back to the first node in the array

. Iﬁ'p-ut array = [20, 12, 35, 15, 10, 80, 30, 17, 2, 1] = Startat rightmost array position that has a child.
= Just make a complete binary tree = Indexiis (n/2)" of the array.

® el)
/'\/.\/ :/.\. - e e

‘Move to next lower array position.
- v Wer array postt = Find a home for 15

P

= “Vove to next lower array position. . Fnd a home for 35

= Move to next lower array position. s Find a home for 12

et

= Find a home for 12 “Move to next lower array position.

20 0

R

= Result the max heap

RVIRBCR TS

.

S

Leftist Trees for Priority Queue

. H-e'a?is efficient for priority queue

= Some applications require merging two or more priority queues
= Heap is not suitable for merging two or more priority queues

= Leftiest tree is powerful in merging two or more priority queues

Pl e
® @ ./ ./

Height-Biased Leftist Tree (HBLT)

= Extended Binary Tree: Add an external node replaces each
empty subtree.

A Internalnode

oo
= &;3 §”< £« External node

—

b [c] [d] [e]

= Let s(x) be the length of a shortest path from node x to an external
node in its subtree.

s values

= A'binary tree is a height-biased leftist tree (HBLT)

iff at every internal node, the s value of the left child is greater than or equal to
the s value of the right child.

= A max HBLT is an HBLT that is also a max tree.

= A min HBLT is an HBLT that is also a min tree.

2

'@
s S values in HBLT contributes to make complete binary tree!!!!!!

s [Theorem] Let x be any internal node of an HBLT
= The number of nodes in the subtree with root x is at least 25 — 1
= If the subtree with root x has m nodes, s(x) is at most log,(m+1)
= The length of the right-most path from x to an external node is s(x)

Weight Biased Leftist Tree (WBLT)

= " et W(x) be the weight from node x to be the number of internal
nodes in the subtree with root x

SR

a> A

w values

= A binary tree is weight-biased leftist tree (WBLT)

iff at every internal node the w value of the left child is greater than or
equal to the w value of the right child

= A max WBLT is a max tree that is also a WBLT
= A min WBLT is a min tree that is also a WBLT

Meld Two HBLTs

= Let A & B be the two HBLTs
Compare the root of A & B

The bigger value is the new root for the melded tree
= Assume the root of A 1s bigger & A has left subtree L

Meld the right subtree and B =» result C

A has the left subtree L and the right subtree C
Compare the S values of L & C

Swap 1f necessary

= Consider the two max HBLTs

S

value 1. 1.

= 9>7, so 9is root.

= The s value of the left subtree of 9 is 0 while the s value of the right
subtree is 1 =» Swap the left subtree and the right subtree

1
1
Ol
@ 1
Cohsider the two max HBLTs

1 1.

o

= 10> 7,sorootis 10

1

Comparing the s values of the left and right children of 10, a swap is not
necessary

Consider the two max HBLTs

\ata Crrchiirac ute]

= 18 > 10, root is 18
= Meld the right subtree of 18
= s(left) < s(right), swap left and right subtree

%)

MNata Crrirtiiras

] SNU
= 40 > 18, root is 40

= Meld the right subtree of 40

= s(left) < s(right), swap left and right subtree

R {f?

VAW 5 a

Initializing a Max HBLT

= Créate a max HBLT with the five elements 7, 1, 9, 11, and 2
= Five single-element max HBLTs are created and placed in a FIFO queue

= The max HBLTs 7 and 1 are deleted from the queue and melded into (a)

—> 2,11,9,1,7 —>

7&1=> @
(a) — (@219 —>
= The result (a) is added to the queue

= The max HBLTs 9 and 11 are deleted from the queue and melded into (b)

— @ 2 —

S9&11=>

@ — () @2 —
(b)

= The result (b) is added to the queue

C IHg max HBLTs 2 and (a) are deleted from the queue and melded into (c)

(b) -

2&(a) 2>
@ — O, B —
(c)

= Theresult (c)is added to the queue

—

= The max HBLTs (b) and (c) are deleted from the queue and melded

into the result
v
€)

@ — result —

result

= The result is added to the queue
= The queue now has just one max HBLT, and we are done with the

initialization -= SNU

4. Optimal Binary Search Trees

A binary search tree is one of the most important data structures in computer science. One of
its principal applications is to implement a dictionary, a set of elements with the operations of
searching, insertion, and deletion.

As an example, consider four keys A, B, C, and D

A) (B)
to be searched for with probabilities 0.1, 0.2, 0.4, (\ /,_\/)\J\\/,_,\
and 0.3, respectively. The figure depicts two out of @ & :‘9‘:\
14 possible binary search trees containing these t@ ©
keys. \@)

The average number of comparisons in a successful search in the first of these trees is 0.1 *
1+402% 24+04* 3+0.3% 4=2.9, and for the secondone itis 0.1 *2+0.2* 1+0.4* 2+
0.3 * 3=2.1. Neither of these two trees is, in fact, optimal.

Following the classic dynamic programming approach, we will find values of C(i, j) for all
smaller instances of the problem, although we are interested just in C(I, n). To derive a

recurrence underlying a dynamic programming algorithm, we will consider all possible ways

to choose a root ax among the keys a;, . . ., a; . For such a binary search tree (Figure 8.8), the
root contains key ak, the left subtree T contains keys ay, . . ., ax-; optimally arranged, and
the right subtree Ty, jcontains keys ag.q., . . . , aj also optimally arranged. (Note how we are

taking advantage of the principle of optimality here.)

C

/\ / \
\ \
[\ /2*;;?;:\
J,/ - TR g1 \\ / -]SP% PR a; \
/ \

\
\

FIGURE 8.8 Binary search tree (BST) with root a; and two optimal binary search subtrees
T land 7. ..

I

If we count tree levels starting with 1 to make the comparison numbers equal the keys’ levels,

the following recurrence relation is obtained:

J
Ci, jy= mn{Cli k=D +Clk+1,)+ Z By

Example: Let us illustrate the algorithm by applying it to the four-key set we used at the
beginning of this section:

K ev A B {: 1)
probability 0.1 0.2 0.4 03

The initial tables look like this:

main table root table
0 1 2 3 4 0 1 2 3 4
1710 0.1 1 1
2 0 0.2 2 2
3 0 04 3 3
4 0 03 4 4
5 0 5

Let us compute C(1, 2):

k=1 C(1,00+C2,2)+Y> ,p,=0+02+03=0.5
C(1, 2) = min ?
k=2 CO,D+CGD+¥ p=01+0+03=04

= 0.4.
Thus, out of two possible binary trees containing the first two keys, A and B, the root of the
optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a
successful search in this tree is 0.4. On finishing the computations we get the following final
tables:

main table root table
0 1 2 3 4 0 1 2 3 4
T10 Q1 04 1.1 1.7 1 1T 2 3 3
2 0 02 08 14 2 2 3 3
3 0 04 1.0 3 3 3
4 0 03 4 4
5 0 5

Thus, the average number of key comparisons in the optimal tree is equal to 1.7. Since R(1,
4) = 3, the root of the optimal tree contains the third key, i.e., C. Its left subtree is made up of
keys A and B, and its right subtree contains just key D. To find the specific structure of these
subtrees, we find first their roots by consulting the root table again as follows. Since R(1, 2) =
2, the root of the optimal tree containing A and B is B, with A being its left child (and the
root of the one-node tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of this one-node optimal
tree is its only key D. Figure given below presents the optimal tree in its entirety.

