Module-2 8Hours
QUEUES: Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and queues.
LINKED LISTS : Singly Linked, Lists and Chains, Representing Chains in C, Linked

Stacks and Queues, Polynomials
Text Book: Chapter-3: 3.3, 3.4, 3.7 Chapter-4: 4.1 to 4.4

Queue

A Queue is a data structure in which we can add element only at one end, called the rear of the queue, and delete
element only at the other end, called the front of the queue.

There are two operations possible on the queue.

¢ Add an element to the queue.
e Delete an element from the queue.

To understand how the above operations work on a queue. See the example given below.

F =Front R =Rear Size=5
‘ ‘ ‘ ‘ ‘ ‘ Queue is empty
1 0 1 2 3 4
R
| 12 | | | | | Add 12
1 0 i 2 3 4
R
| 12 | 8 | | | | Add 8
1 0 1 2 3 4
R
‘ 12 ‘ 8 ‘ 37 ‘ ‘ ‘ Add 37
1 0 g | 3 4
’ 12 | 8 ‘ 37 l 85 | ‘ Add 85
1 0 1 2 3 4
R
(2] s |37 [5] 2| At
1 0 1 2 3 4
F
| | 8 l 37 | 85 | 24 l Remove 12

37 85 24 Remove 8

1 0 1 2 3
85 24 Remove 37
1 0 1 2 3
F
24 Remove 85
1 0 1 2 3
F
Remove 24
1 0 1 2 3 5

From the above image, we can see that when we add a new element in the queue, the variable R is increased by
1, and the new element is added at the new position of R. Similarly, when we delete an element from the queue,
the variable F is increased by 1.

The queue behaves like a first in first out manner. It means that the elements that are added first to the queue,
are removed first from the queue.

So a queue is also known as FIFO (First In First Out) data structure.

Array Implementation of Queue

Since a queue is a collection of the same type of elements, so we can implement the queue using an array.

Size=5
arr
1 0 1 2 3 4
R F

In the above image, we can see an array named arr whose size is 5. We take two variables R and F, The
variable R stands for rear and the default value is -1. The variable F stands for front and the default value is O.

Add Operation in Queue

For add operation in the queue first, we check if the value of R is equal to the value of size-1 then, we will
display a message Queue is full, else we will increase the value of R by 1 and add the element in the array at the
new location of R.

Example

if(R==size-1)

{
printf("Queue is full\n");
}
else
{
R=R+1;
arr[R]=new_item;
}

If we add three elements, say 12, 15 and 26 in the queue, then the queue will look like as shown in the image
below.

Size=5

arr 12 15 26

Delete Operation in Queue

For delete operation in the queue first, we check if the value of F is greater than the value of R then, we will
display a message Queue is empty, else we will display the deleted element on the screen and then increase

the value of F by 1.

Example
if(F>R)
{
printf("Queue is empty\n");
}
else
{
printf("Element Deleted = %d",arr[F]);
=F+1;
}
If we delete the first elements 12 from the queue, then the queue will look like as shown in the image below.
Size=5
arr 15 26
1 0 1 3 4

Program of Queue using Array

#include <stdio.h>
#include <stdlib.h>

ttdefine size 5

int main()

{
int arr[size],R=-1,F=0,ch,n,i;
for(;;) // An infinite loop
{
printf("1. Add\n");
printf("2. Delete\n");
printf("3. Display\n");
printf("4. Exit\n");
printf("Enter Choice: ");
scanf("%d",&ch);
switch(ch)
{
case 1:
if(R==size-1)
printf("Queue is full");
else
{
printf("Enter a number ");
scanf("%d",&n);
R++;
arr[R]=n;
}
break;
case 2:
if(F>R)
printf("Queue is empty");
else
{
printf("Number Deleted = %d",arr[F]);
F++;
}
break;
case 3:
if(F>R)
printf("Queue is empty");
else
{
for(i=F; i<=R; i++)
printf("%d ",arr[i]);
}
break;
case 4: exit(0);
default: printf("Wrong Choice");
}
}
return O;

}

Circular Queue

A Circular Queue is a data structure in which elements are stored in a circular manner. In Circular Queue, after
the last element, the first element occurs.

A Circular Queue is used to overcome the limitation we face in the array implementation of a Queue. The
problem is that when the rear reaches the end and if we delete some elements from the front and then try to
add a new element in the queue, it says "Queue is full", but still there are spaces available in the queue. See the
example given below.

37 85 24

-1 0 1 2 3 4
R

In the above image, the queue is full because the rear R reached the end of the queue. We have deleted two
elements from the queue, so the front F is at index 2. We can see that there are spaces available in the queue,
but we can't add a new element because the rear can't go back to index O.

Operation on Circular Queue

There are two operations possible on the circular queue.
¢ Add an element in the circular queue.
¢ Delete an element from the circular queue.
To understand how the above operations work on a circular queue. See the example given below.

3
3
2 Size=5
F=0 2 Size =5
R=-1 F=0
te =0 (Total Elements) R=0
Add 12 te =1 (Total Elements)
R=(R+1) % Size=0 Add 27
te=1 R=(R+1) % Size=1
1 te=2
1
%]
F
R
3
3 SR
2 Size=5 2 Size=5
F=0 F=0
R=1 R=2
te=2 (Total Elements) 4 te=3 (Total Elements)
Add 56 Add 8
R=(R+1) % Size =2 R=(R+1) % Size=3
1 te=3 i te=4
0

3 3
2 “ Size=5 2 “ Size=5
F=0 F=0
R=3 R=4
4 R te=4 (Total Elements) 4 R te=5 (Total Elements)
Add 20 Add 15
R=(R+1) % Size=4 te ==Size
1 te=5 1 Queue is full
(%] 0
= F
3 3
. F
“ Size=5 2 Size=5
L F=1
R=4 R=4
4R te=5 (Total Elements) 4R te=4 (Total Elements)
E?Ie;illz‘y il Delete 27
= (F+1) % Size = F=(F+1) % Size =2
te=4
1 te=3
E
@)
F
3
3
F . o 2 Size=5
Slie =5 E=2
F=2 R=0
R=4 4 te=4 (Total Elements)
4 te =3 (Total Elements)
o Delete 56
2 F=(F+1) % Size =3
R=(R+1) % Size =0 =
i 1 te=3
1 e
0
0 R
R

From the above image, we can see that when we add a new element in the circular queue, the variable R is
increased by R=(R+1)%Size, and the new element is added at the new position of R and te is increased by 1.
from the circular the variable Fis increased

element queue,

Similarlyy, when we delete an
by F=(F+1)%Size and te is decreased by 1.

Add Operation in Circular Queue

For add operation in the circular queue first, we check if the value of te is equal to the value of size then, we will
display a message Queue is full, else we will increase the value of R by R=(R+1)%Size and add the element in the

array at the new location of R and then increased the value of te by 1.

if(te==size)

{
printf("Queue is full\n");

else

{
R=(R+1)%size;
arr[R]=new_item;
te=te+1;
}

Delete Operation in Circular Queue

For delete operation in the circular queue first, we check if the value of teis 0then, we will display a
message Queue is empty, else we will display the deleted element on the screen and then increase the value
of F by F=(F+1)%Size and then decrease the value of te by 1.

if(te==0)
{
printf("Queue is empty\n");
}
else
{
printf("Element Deleted = %d",arr[F]);
F=(F+1)%size;
te=te-1;
}

Program of Circular Queue using Array
Below is the complete program of circular queue in C using an array having size 5.

#include <stdio.h>
#include <stdlib.h>

t#tdefine size 5

int main()

{
int arr[size],R=-1,F=0,te=0,ch,n,i,x;

for(;;) // An infinite loop
{
printf("1. Add\n");
printf("2. Delete\n");
printf("3. Display\n");
printf("4. Exit\n");

printf("Enter Choice: ");
scanf("%d",&ch);

switch(ch)

{
case 1:
if(te==size)
printf("Queue is full");
else
{
printf("Enter a number ");
scanf("%d",&n);
R=(R+1)%size;
arr[R]=n;
te=te+1;
}
break;
case 2:
if(te==0)
printf("Queue is empty");
else
{
printf("Number Deleted = %d",arr[F]);
F=(F+1)%size;
te=te-1;
}
break;
case 3:
if(te==0)
printf("Queue is empty");
else
{
x=F;
for(i=1; i<=te; i++)
{
printf("%d ",arr[x]);
x=(x+1)%size;
}
}
break;
case 4:
exit(0);
default:
printf("Wrong Choice");
}

}

return O;

: . YYau €
C; -(cu]o.-f Quaues \sz\a7L D\lro\mg A’ X

By

\Js:r\aB o J‘j"“"’\'wj au‘w o\.,‘.“‘\s »)—eY t“k
~¥Ya o
efe mendc ol NN earne e Size o e a "

osi Koy in Fe
needed. be £ C..Fc,gl'b be e Auvmbey b()_ P S

0\“(10\3

vyeu we
°\/VQ\!2_ & T«: AAA o C/‘Lng,\t fo o f—\l” q,veve |

ve

\
O~‘Y1q3 AouLln’\bb Con $| Ju.’\ .-)-L.._ +’\‘
,F‘ \qu{. L Lot.;-\A o ‘\’UQUC Loy "1\

wkoit Co-rac.q)\l v ?,

ﬁ/vt"ﬁ K tl,_ drsnbwn'%

Seuen e/co_wi—\’l’_ﬂ in o O‘YYA‘A

QQ% ueve 03 1B By [1Y) i3
DeeY, i

®lE]F]a Al e
front=S | ~veexay
R) Fladdoned wics b ehvenlat
B e b sifns I queve
T R N N SRR

CbF?cJ G be Limjed to kfa.d&:-—
by cus bo 2.4'r\n.h Fre

“‘f"“j Aé“b“'"‘h C=A~L S0 e #o obfein
t"— Cbhﬁj-:Bu'(mA‘;nv\

ot ﬁelluu\ .-l—«suve.
‘IOS M Ry I v I3 ied)

Bl §3 33 gd §3 L8 6} 63
301 G CY EX 3 i o i e s B

,-}-Sohi. =18, ~xeaxz g

mey be QL‘,‘D\;'\&A

TL:» Cb’\.)-:}uio\‘);op\

ah j—o"e«‘i 3
9 C‘Yee\k o

eprent (e, e el e £ Yveue [feont 4]
%’\ Wu(ve. EC’*P"‘C‘!‘A ']) b Pgs:ﬁch—s

" pew Queve
LEX“N a ©O.

2) CPy B pus2 R O, e
4 veve [\'2413> P Fos'i‘o’v‘ EN "W Que ve Lea&-\ﬁ'\\é oz
G-fqg'-b ;}.‘i'ov\t"’l

Ehvrou

q, veve [ol ’ﬂ\'n“a"\

?'ﬂ’%ﬂ' bele ‘x'“% He Code 25 odd Fv o Civewlay

‘chvc.
SSirae o dqramictly allecaded

0\\""0\: &

void aa\b\((fe nent ilem)

{ Pl eon Tl fo e queve 2/

Yo ¥ =

-

(rear +) ¥ copaciiys
‘-j— ({iw:\t 22 veaw)

q veve full Cy »

7% laskie
Ve ve ['(Cn:{} =V dem

Copacily xf
:

Tha Fvoxﬁmm bede s ?vo; Ha Co S .jgw{ "\(“‘e-“‘Fu“ - The j—u,.dv’cn
be‘3 (qlb,LB CO?‘“ dn_mo.tS ,f»rom letaBsrn a ﬁnug\ L-1 7o

lo taBomn Le_ezgiardm.b ot C.

& queve Full ()

Vo

£

N;""« Aoice fle. &.fe.(.;l‘l *I

Qu(ve

/‘Y‘ Q,h r‘-rbm

IS 4

s TF Cpaciiy * Si2e of C*‘\,vuﬁpi
O\Jveve 'ib
| Skt - (f~ont +1) -2 Capacidy ;
g C_quri £ 3N ’
/% Ao
Cop
else

new Queve */

YRR avound »*(

9 C“\,VZUL + St 2

/ qveve 45l vt +G.'9=\c1b3—~|/ ”C“’Q“CUC)L

{
/* 0\’.\4202- w-to\r_s axound */
Co
Fj Cc\,ueue +.Sz’~wut/ 4 ve ve -)—c.\':aub-_\ rew Que P_) ;
' i i
; Caf‘j (c‘(vgue /

p I\e.co(luo.ugv)—cg.f;qql-j -S‘l’k'ﬂ'i)}
/% suiten =

ne Queve */

ffeg Q‘\vtu{} ‘/

Aveve - hew Queve !,

MULTIPLE STACKS AND QUEUES

e In multiple stacks, we examine only sequential mappings of stacks into an array. The
array 1s one dimensional which is memory[MEMORY_SIZE]. Assume n stacks are
needed. and then divide the available memory into » segments. The array 1s divided in
proportion if the expected sizes of the various stacks are known. Otherwise, divide the
memory into equal segments.

e Assume that 7 refers to the stack number of one of the » stacks. To establish this stack,
create indices for both the bottom and top positions of this stack. beundary[i] points to
the position immediately to the left of the bottom element of stack 7, rop/i] points to the
top element. Stack i 1s empty 1ff boundaryv[ij=top[i].

The declarations are:
#define MEMORY SIZE 100 /* s1ize of memory */
#define MAX STACKS 10 /* max number of stacks plus 1 */
element memory[MEMORY SIZE]: /* global memory declaration */
mt top [MAX STACKS]:;
int boundary [MAX STACKS] :
it n; /*mumber of stacks entered by the user */

To divide the array into roughly equal segments

top[0] = boundary[0] = -1:
tor (j=1y=<n:; j++)
top[j] = boundary[j] = (MEMORY SIZE /n) * j:
boundary[n] = MEMORY SIZE - 1;

0 [m/n] 2 |m/n] m-1
boundary[0] boundary[1] boundary[n]
top(0] top[1]

All stacks are empty and divided into roughly equal segments

Figure: Initial configuration for » stacks in memiory [m].

In the figure, n 1s the number of stacks entered by the user, n < MAX STACKS. and
m=MEMORY SIZE. Stacki grow from boundary[i] + 1 to boundary [i + 1] before 1t 1s full.
A boundary for the last stack 1s needed, so set boundary [n] to MEMORY_SIZE-1.

Implementation of the add operation

void push(int 1, element item)
{ /* add an item to the 1th stack */
if (top[1] == boundary[i+1])
stackFull(1):
memory[++top[i]] = item:

\
il

Program: Add an item to the ith stack

Implementation of the delete operation

element pop(int 1)

{ /* remove top element from the ith stack */

if (top[i] == boundary][i])
return stackEmpty(1):

return memory[top[i]--];

\
i)

Program: Delete an item from the ith stack

The top[i] == boundary[i+1] condition in push implies only that a particular stack ran out of
memory, not that the entire memory is full. But still there may be a lot of unused space between

other stacks in array memory as shown in Figure.

Therefore, create an error recovery function called stackFull, which determines if there is any
free space in memory. If there is space available, it should shift the stacks so that space is

allocated to the full stack.

s T T

of0] ([0] B[] [l biil tli] i +1]
bli+1] bli+2]

b boundary , t=top

t1jl

Singly Linked List

Singly Linked List is a linear and unidirectional data structure, where data is saved on the nodes, and each node
is connected via a link to its next node. Each node contains a data field and a link to the next node. Singly Linked
Lists can be traversed in only one direction.

Here’s a node structure of a Singly Linked List:

Data can hold any It points to the next
other data structures node in the Linked List

Node structure defined in C:

struct Node {
int data;
struct Node* next;

}s

Operations of Singly Linked List
e Inserting at head
e Inserting at tail
o Inserting after a node
o Delete the head node
o Delete the tail node
o Search and Delete a node
o Traversing the Linked List

Here’s an example of a linked list with four nodes.

Head Node

Lﬂ_f-*“ Kl —EN

Insertion at the head of a Singly Linked List

To perform this operation, we need to follow two important conditions. They’re
1. If the list is empty, then the newly created node will be the head node, and the next node of the head will
be "NULL”.
2. Ifthe list is not empty, the new node will be the head node, and the next will point to the previous head
node.

Here’s the C code for inserting a node at the head of a linked list:
struct Node* insertAtHead(struct Node* head, int value) {
// Create a new node with the given value

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;

https://www.guru99.com/images/3/singly-linked-list-2.png

//'If the list is empty, make the new node the head
if (head == NULL) {
newNode->next = NULL;
head= newNode;
return head;
}
else {
// Otherwise, insert the new node at the head
newNode->next = head;
head= newNode;

return head;
¥
}
New Node
Head Node Ii‘
LIEI g 5 Kl — KL
Head Node After inserting at the head

Insertion at the end of a Singly Linked List

Step 1) Traverse until the “next” node of the current node becomes null.
Step 2) Create a new node with the specified value.
Step 3) Assign the new node as the next node of the tail node.

C code for inserting a node at the tail of a singly list:
struct Node™* insertAtEnd(struct Node* head, int value) {

/I Create a new node with the given value

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;

newNode->next = NULL;

//'If the list is empty, make the new node the head
if (head == NULL) {

return newNode;
}
else {

// Traverse the list to the end

struct Node* current = head;

while (current->next != NULL) {

current = current->next;

}

https://www.guru99.com/images/3/singly-linked-list-3.png

// Insert the new node at the end
current->next = newNode;

return head;
}
}
New Node
Head Node n —
LIEI — L —IEl —Ka
After inserting at the end
Head Node

e EEE KN KN

Insertion after a node in a Singly Linked List

Step 1) Traverse the next node until the value of the current node equals the search item.

Step 2) New node’s next pointer will be the current node’s next pointer.
Step 3) Current node’s next node will be the new node.

Here’s the C code for inserting a node after a node:
struct Node™ insertA fter(struct Node* head, int value, int searchltem) {

/I Create a new node with the given value
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;

/I Traverse the list to find the node with the specified searchltem

struct Node* current = head;

while (current != NULL && current->data != searchltem) {
current = current->next;

}

// If the searchltem is not found, return the original list
if (current == NULL) {
return head;

}

// Insert the new node after the node with searchltem
newNode->next = current->next;
current->next = newNode;

return head;

https://www.guru99.com/images/3/singly-linked-list-4.png

New Node

.

)

LlﬂH 5 |

:

L

Head Node Inserting after node 11

Lﬂ_ g 5 iy 11 |

nl_l

Delete the head node of the singly linked list

Step 1) Assign the next node of the head node as the new head.
Step 2) Free the allocated memory by the previous head node.
Step 3) Return the new head node.

The C code for deleting the head node:
struct Node* deleteHead(struct Node* head) {
// If the list is empty, return NULL
if (head == NULL) {

return NULL;
h

// Store the current head in a temporary variable
struct Node* temp = head,

// Update the head to the next node
head = head->next;

// Free the memory of the original head
free(temp);

return head;

https://www.guru99.com/images/3/singly-linked-list-5.png

Head Node

Head Node

Delete the tail node of the singly linked list

Step 1) Traverse before the tail node. Save the current node.
Step 2) Free the memory of the next node of the current node.
Step 3) Set the next node of the current node as NULL.

Here’s the C code for deleting the tail node:
struct Node* deleteTail(struct Node* head) {

// If the list is empty or has only one element, free the head and return NULL
if (head == NULL || head->next == NULL) {

free(head);

return NULL;

}

/] Traverse the list to the second-to-last node

struct Node* current = head;

while (current->next->next != NULL) {
current = current->next;

}

// Free the last node and update the next pointer of the second-to-last node
free(current->next);
current->next = NULL;

return head;

https://www.guru99.com/images/3/singly-linked-list-8.png

Head Node

—xan

Head Node

Search and delete a node from a singly linked list

After deleting the tail

K

Step 1) Traverse until the end of the linked list. Check if the current node is equal to the search node or not.
Step 2) If any node matches, store the node pointer to the current node.
Step 3) The “next” of the previous node will be the next node of the current node.

Step 4) Delete and free the memory of the current node.

C code for search and delete a node from a singly linked list:

struct Node* searchAndDelete(struct Node* head, int searchltem) {

/' 1f the list is empty, return NULL
if (head == NULL) {
return NULL;

}

/I Traverse the list to find the node with the specified searchltem
struct Node* current = head;
while (current->next != NULL && current->next->data != searchltem) {

current = current->next;

}

// If the searchltem is not found, return the original list
if (current->next == NULL) {

return head;

}

// Delete the node with the specified searchltem
struct Node* temp = current->next;

current->next = temp->next;

free(temp);

return head;

https://www.guru99.com/images/3/singly-linked-list-8.png

Head Node

After deleting node 11
Head Node

n_n

Traverse a singly linked list

Y

Y

HI_I

o N

Step 1) Traverse each node until we get null as the next node.
Step 2) Print the value of the current node.

C code for traversing a singly linked list:

void traverse(struct Node* head) {
// Traverse the list and print the values
while (head !'=NULL) {
printf("%d -> ", head->data);
head = head->next;

}
printf("NULL\n");

}

https://www.guru99.com/images/3/singly-linked-list-9.png

Linked Stacks

Stack is a linear data structure which follows the property Last In First Out (LIFO). This means, the last
inserted element will be the first to be removed. Because of this nature, stack has only one end indicated
by variable Top. Top take care of the element present at the top of the stack. Two basic operations that
can be applied to stack are

1. Insertion, usually termed as Push and

2. Deletion, usually termed as Pop.

Two conditions are checked while push or pop operation on the linked list.
1. Overflow: the stack is full; element cannot be inserted
2. Underflow: the stack is empty; cannot remove an element

Linked list representation of the stack allows it to grow or shrink without any prior fixed limit due to the
dynamic nature of the linked list. Diagram shows how a stack data structure can be represented using
linked list.

N 4

Top=—{ §0

Z o

60
50 80 —1» 70 -1 60 —+»] 50 | Null

This is the linked list representation of a stack having four elements. The top most element is at the
beginning of the list. Here, the top most element is 80. And the oldest element is at the end of the list.
Here, the oldest element is 50. The first element of the linked list here is represented by a pointer variable
Top.

Push Operation

Push operation is the insertion of an element at the top of the stack. In case of linked list to represent
the stack, the push operation can be performed by inserting an element at the beginning of the linked
list. Here is the C code depicting the push operation on stack where, the element Data is inserted into
the stack using linked list. A stack pointer variable Top points to the top most element or node of the
stack.

/I Define a structure for the node
struct Node

{

int info; /I Data of the node
struct Node* next; /! Pointer to the next node

)
struct Node* top = NULL;

/I Function to push a new element onto the stack
void push(int data)
{

struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->info = data;
newNode->next = top;
top = newNode;

J

3] -

—bl{iﬂ

—I—>50

Nu]ll

T;sn

o] -

Pop Operation

Pop operation is the deletion of an element from the stack that can be performed by deleting an element
at the beginning of the linked list. While performing pop operation, underflow condition must be checked.
Here, the underflow condition occurs when the stack is empty and we try to delete an element from the
stack. Here is an algorithm depicting the pop operation on stack, where, the first element or node pointed

by stack pointer variable Top is deleted.

/I Function to pop an element from the stack

int pop()
{

if (top == NULL)

printf("Stack is Empty, Underflow Condition\n");

}

int data = top->info;
struct Node* temp = top;
top = top->next;

free(temp);
return data;

80

70

Temp

—» 50 |Nu]1

Linked Queues

Queue is a linear data structure which follows the property, First In first Out (FIFO) or First Come First
Serve (FCFS). The first inserted element will be the first to be removed. Queue has two ends, one is
Front and other is Rear. Front variable indicates the oldest element inserted into the queue and Rear
variable indicates the last element inserted into the queue.

Two basic operations that can be applied to queue are
1. Insertion operation, that takes place at Rear end
2. Deletion operation, that takes place at Front end.

Two conditions are checked while insertion or deletion operation on the linked list.
1. Overflow: the queue is full; element cannot be inserted
2. Underflow: the queue is empty; cannot remove an element
Linked list representation of the queue allows it to grow or shrink without any prior fixed limit due to the

dynamic nature of the linked list. Diagram shows how a queue data structure can be represented using
linked list.

(Front) Rear

— 4 —_—p b s e B —1—» d | Nullj«

Insertion Operation

The insertion of new element takes place at the rear end of the queue. Below is the diagram along with
algorithm for insertion of an element ‘e’ into the queue. The element ‘e’ is inserted at the Rear end of the
list.

(ant) Rear (Front) Rear
s Null —d 7 — o |nunfe—

Rear = New
Front = New

This insertion of a New element ‘e’ in the empty queue

a " b 1P « —_—> d —

S ——

|
|
|
|
Ll e |Nul

7 y

Rear ->Next = New
Rear = New

This insertion of a New element ‘e’ in the queue

/I Define a structure for the node
struct Node
{
int info; /! Data of the node
struct Node* next; /! Pointer to the next node

struct Node* front = NULL;
struct Node* rear = NULL;

/I Function to insert an element into the queue
void enqueue(int data)

{
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->info = data;
newNode->next = NULL;
if (rear == NULL)
{
front = rear = newNode;
}
else
{
rear->next = newNode;
rear = newNode;
}
}

Deletion operation

Deletion of an element from the will be performed at the beginning of the linked list. While deleting an
element from the queue, underflow condition must be checked. Here, the underflow condition occurs
when the queue is empty and we try to delete an element from the queue. Here is the algorithm depicting
the deletion operation on queue. The element at the front end of the queue is deleted.

/I Function to remove an element from the queue

(Front)

Temp

—P¥ a |Null j—

(Front) (Rear)

—> Null =

Temp = Front
Front = Null
Rear = Null
Deallocate Temp

Deletion of an element from the Queue having only one node

{ Rear)

» d | Nullf&——

Temp = Front
Front = Front -> Next
Deallocate Temp

Deletion of an element from the Queue

int dequeue()

{

if (front == NULL)

printf("Queue is Empty\n");

}

int data = front->info;
struct Node* temp = *front;

if (front == rear)

{
front = rear = NULL;
}
else
{
front = front->next;
}
free(temp);

return data;

(®

AfP,;C“"""" o IMrkeh Lsts:

e ———

P°|3Aom:~ﬂs:

P°|jr~orv(a-oq Rt?mubuku\‘-

In %Mmd L ®C weantl fo ‘*cf*ae.at gre Pelysoniad

A(&):C\ ch-(
T X b a xC

t.)h.vf. e . ave hoA 2gva

Gefficets and de € o
Mv\r\u&kve ir\"tczg.-(’Hﬂ . ~

e Pol\h*s Soch i"'-.‘t e'h\.| > eh-z >

> =

’ e, >e° 2 o0, \We
Co nda

TPrreat Cach Ferin L o mede
..‘.-ub Geflicdea? and eXporent fFeldy o weld ay o
Poindev Lo g rxt Zevm . Agsomi Hat Fte Co efficients
eve ‘mk«ao.vs,ﬂ-o_ e dectavahomn ove :
1_-7(,¢l.__]_ Shvet
i-\’pe_lc.+ Stuc

P°\‘j No le ¥-F°‘3 Po‘u\-kt;

£
ikt Coeq
int eXPon‘/
Pely Pointe « li.d-c;
SP.I:,,J,J_,_.,

PQ':P&:A"'{Y Q’ L;

we
'.L'ﬁku) P.'j NGJQA o

Cog+

Expon Lak
T‘"” »’-oue-.)‘.
A\ ‘F “re. shaw
Poly me miota .b e g G ta
= e
A= 3x +2x? + |
C\h& b - gx-lq,

— 10
3x + 1056

°*§—)L3"\- >9—!9}—{Too
B

&_i;_::b Pol: MN\:JA‘-

Te odd Lo Po\3r~or~~2~bs, We R xonr~e Tleiv fevyms
,s-\-.m-\%m.b of the foden peinded fo by o end b, I e

rponeats of Fe Auvo Lecna

o ve Q.\ch , we add Fte
two Coc.‘r,f‘oeﬁt.{ ond exea e a o Zexpm ,1-5\' fte venolt.
we lso MoNe e ?o‘m—kts bo e rext reden ia a ond b,
3% '7— ¥ :)_)ﬁ o|O
Qox
ae iy
b

C !uiu*!]

e eXpone~zZ of e

Ire

cuvvead Jexm in a4

A lemn Zhean
e_)tlbonec\'t Q+ e cusvea *1m " b‘ #Q.A we Cre._'ft oL
A\\F“C“k k\'m °+ b) o\tﬁ-u\ ik:/\ i‘tm i!» 'H‘L "’Q&-\‘t ¢ c’b‘/“& C._‘

and rdvon o e Pgtn-}e-r to e prxt fvm A b,

314 F——=]5]5 [ofo]

@

we fhk_ o S;M:-‘as“ achoa on o i‘j. AP > b_)gyt:on.

S+ [F—{ T
¢
o b
2|y -3 e ‘°6'°

[Pl F——{z] e[

Folb Po:vs*t'(P"“LJ‘ Cf°l‘j Fo?n-kf e, P°|‘j Pm‘a dex "B
{ /—)G \'64\)1/\ e~

PO"3MMJ Whh s e s0m o,}- o~ omd b '*/
P°\‘3 Poin de v c, Year, ""-""F}
int Sum

MAllLoc ere..y' Sizeof (& vear)):
J

C=veax:

£

Switch (ComPARE (o o
{

PPen, b exporO')

Case ~: [/ p aexpen £ b—)eﬁro"]
o;"'*ka\Cb—)c =
°¢t, BDexpon 4 renr)",
b= b'é’n'hk)
breaks
Case o

/% oy wRpon = ex pon *|

Som = o
' (sum)
aze ch CSum' o

a:z m“)'iv\k;

= et + L—bc.oe.}',

Dexpon, bver):

b= b» hhk'l
L-fe..k;

canse |

\wJ
2

/* o> eppen > bderpon

at‘,‘&b‘\ (“ = Cet,{. D expen, 4 '((u'l\)

o\ = ea=) Lv\k}

3

/* Coftj yeat o,\. st o o~nd e~ Vst b a'}/

.S—oYC s, az a=d lin k)

attch (o Coot , &> Fpon ,deceax,
Fov (5 b2 bzb->Lak)
ottin (b toef, b expen & Yeav),

YLay => \}'ak = NuLL;

[t dedete exbio inmNod rode)

!tmf =y
Cz= ¢ lav\k)
'*"—LG"*M?B Y

e utn C.;
3
C.q‘Tculo.‘Y R i :
UsT vepvesanhton of ?olarom'wb-‘-
We. m°¢\.:+\3 ooy lis2 sShuchve
oy e |t Lode Fo‘.uts

to Zhe jh.st rode

We cld Hus Crveolay Visz,

So Bt dJ link feld

in P lis?,

l-\.ti'

