
DATA STRUCTURES-BCS304 MODULE 1

 1

MODULE 1

INTRODUCTION TO DATA STRUCTURES: Data Structures, Classifications (Primitive

& Non-Primitive), Data structure Operations Review of pointers and dynamic Memory

Allocation

 ARRAYS and STRUCTURES: Arrays, Dynamic Allocated Arrays, Structures and Unions,

Polynomials, Sparse Matrices, representation of Multidimensional Arrays, Strings

STACKS: Stacks, Stacks Using Dynamic Arrays, Evaluation and conversion of Expressions

DATA STRUCTURE

Data structure is a representation of the logical relationships existing between individual

elements of data. A data structure is a way of organizing all data items that considers not only

the elements stored but also their relationship to each other.

The logical or mathematical model of a particular organization of data is called a data

structure.

The choice of a particular data model depends on the two considerations:

1. It must be rich enough in structure to mirror the actual relationships of the data in the real

world.

 2. The structure should be simple enough that one can effectively process the data whenever

necessary.

BASIC TERMINOLOGY

Elementary Data Organization

Data: Data are simply values or sets of values.

Data items: Data items refers to a single unit of values. Data items that are divided into sub-

items are called Group items. Ex: An Employee Name may be divided into three subitems-

first name, middle name, and last name. Data items that are not able to divide into sub-items

are called Elementary items. Ex: SSN

Entity: An entity is something that has certain attributes or properties which may be assigned

values. The values may be either numeric or non-numeric. Ex: Attributes- Names, Age, Sex,

SSN Values- Rohland Gail, 34, F, 134-34-5533 Entities with similar attributes form an entity

set. Each attribute of an entity set has a range of values, the set of all possible values that

could be assigned to the particular attribute. The term “information” is sometimes used for

data with given attributes, of, in other words meaningful or processed data.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 2

Field: is a single elementary unit of information representing an attribute of an entity. Record

is the collection of field values of a given entity.

File: is the collection of records of the entities in a given entity set.

Each record in a file may contain many field items but the value in a certain field may

uniquely determine the record in the file. Such a field K is called a primary key and the

values k1, k2, ….. in such a field are called keys or key values.

Records may also be classified according to length.

A file can have fixed-length records or variable-length records.

• In fixed-length records, all the records contain the same data items with the same amount of

space assigned to each data item.

• In variable-length records file records may contain different lengths. Example: Student

records have variable lengths, since different students take different numbers of courses.

Variable-length records have a minimum and a maximum length. The above organization of

data into fields, records and files may not be complex enough to maintain and efficiently

process certain collections of data. For this reason, data are also organized into more complex

types of structures.

CLASSIFICATION OF DATA STRUCTURES

Data Structures can be divided into two categories,

i) Primitive Data Structures

ii) Non-Primitive Data Structures

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 3

Primitive Data Structures

These are basic data structures and are directly operated upon by the machine instructions.

These data types consists of characters that cannot be divided and hence they also called

simple data types.

Example: Integers, Floating Point Numbers, Characters and Pointers etc.

Non-Primitive Data Structures

These are derived from the primitive data structures. The non-primitive data structures

emphasizeon structuring of a group of homogeneous or heterogeneous data items.

Example: Arrays, Lists and Files, Graphs, trees etc.

Based on the structure and arrangement of data, non-primitive data structures is

furtherclassified into

1. Linear Data Structure

2. Non-linear Data Structure

1. Linear Data Structure:

A data structure is said to be linear if its elements form a sequence or a linear list. There are

basically two ways of representing such linear structure in memory.

1. One way is to have the linear relationships between the elements represented by means of

sequential memory location. These linear structures are called arrays.

2. The other way is to have the linear relationship between the elements represented by means

of pointers or links. These linear structures are called linked lists.

The common examples of linear data structure are Arrays, Queues, Stacks, Linked lists

2. Non-linear Data Structure:

A data structure is said to be non-linear if the data are not arranged in sequence or a linear.

The insertion and deletion of data is not possible in linear fashion. This structure is mainly

used to represent data containing a hierarchical relationship between elements. Trees and

graphs are the examples of non-linear data structure.

OPERATIONS ON DATA STRUCTURES

The commonly used operations on data structures are as follows,

1. Create: The Create operation results in reserving memory for the program elements.

The creation of data structures may take place either during compile time or during

run time.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 4

2. Destroy: The Destroy operation destroys the memory space allocated for the specified

data structure.

3. Selection: The Selection operation deals with accessing a particular data within a data

structure.

4. Updating: The Update operation updates or modifies the data in the data structure.

5. Searching: The Searching operation finds the presence of the desired data item in the

list of data items.

6. Sorting: Sorting is the process of arranging all the data items in the data structure in a

particular order, say for example, either in ascending order or in descending order.

7. Merging: Merging is a process of combing the data items of two different sorted list

into a single list.

REVIEW OF POINTERS AND DYNAMIC MEMORY ALLOCATION

Pointers to data significantly improve performance for repetitive operations such as

traversing strings, lookup tables, control tables and tree structures. In particular, it is often

much cheaper in time and space to copy and dereference pointers than it is to copy and access

the data to which the pointers point. Pointers are also used to hold the addresses of entry

points for called subroutines in procedural programming and for run-time linking to dynamic

link libraries (DLLs).

Pointer: A pointer is a special variable which contains address of a memory location. Using

this pointer, the data can be accessed. For example, assume that a program contains four

occurrences of a constant 3.1459. During the compilation process, four copies of 3.1459 can

be created as shown below:

 However, it is more efficient to use one copy of 3.1459 and three pointers referencing a

single copy, since less space is required for a pointer when compared to floating point

number. This can be represented pictorially as shown below:

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 5

General form of pointer declaration is –

 type* name;

where type represent the type to which pointer thinks it is pointing to.

Pointers to machine defined as well as user-defined types can be made Pointer

Intialization:

variable_type *pointer_name = 0;

or variable_type *pointer_name = NULL;

char *pointer_name = "string value here";

DYNAMIC MEMORY ALLOCATION

This is process of allocating memory-space during execution-time (or run-time).

• This is used if there is an unpredictable storage requirement.

 • Memory-allocation is done on a heap.

• Memory management functions include:

→ malloc (memory allocate)

→ calloc (contiguous memory allocate)

 → realloc (resize memory)

→ free (deallocate memory)

• malloc function is used to allocate required amount of memory-space during run-time.

• If memory allocation succeeds, then address of first byte of allocated space is returned. If

memory allocation fails, then NULL is returned.

• free() function is used to deallocate(or free) an area of memory previously allocated by

malloc() or calloc().

#include void main()

{

 int i,*pi;

 pi=(int*)malloc(sizeof(int));

 *pi=1024;

 printf("an integer =%d",pi);

 free(pi);

}

Prg: Allocation and deallocation of memory

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 6

• If we frequently allocate the memory space, then it is better to define a macro as shown

below:

#define MALLOC(p,s)

 if(!((p)==malloc(s)))

 } printf("insufficient memory");

 exit(0);

 }

• Now memory can be initialized using following:

MALLOC(pi,sizeof(int));

MALLOC(pf,sizeof(float))

 DANGLING REFERENCE

 • Whenever all pointers to a dynamically allocated area of storage are lost, the storage is lost

to the program. This is called a dangling reference.

POINTERS CAN BE DANGEROUS

1) Set all pointers to NULL when they are not actually pointing to an object. This makes

sure that you will not attempt to access an area of memory that is either

 → out of range of your program or

 → that does not contain a pointer reference to a legitimate object

2) Use explicit type casts when converting between pointer types.

 pi=malloc(sizeof(int)); //assign to pi a pointer to int

 pf=(float*)pi; //casts an ‘int’ pointer to a ‘float’ pointer

3) Pointers have same size as data type 'int'. Since int is the default type specifier, some

programmers omit return type when defining a function. The return type defaults to

‘int’ which can later be interpreted as a pointer. Therefore, programmer has to define

explicit return types for functions.

void swap(int *p,int *q)

{

int temp=*p;

*p=*q;

 *q=temp;

}

Prg: Swap Function

//both parameters are pointers to ints

//declares temp as an int and assigns to it the contents

of what p points to

//stores what q points to into the location where p

points

//places the contents temp in location pointed to by q

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 7

ALGORITHM SPECIFICATION

An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In

addition, all algorithms must satisfy the following criteria:

1. Input: There are zero or more quantities that are externally supplied.

2. Output: At least one quantity is produced.

3. Definiteness: Each instruction is clear and unambiguous

4. Finiteness: If we trace out the instructions of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps.

5. Effectiveness: Every instruction must be basic enough to be carried out, in principle,

by a person using only pencil and paper. It is not enough that each operation be

definite as in (3); it also must be feasible.

Algorithm can be described in following ways:

1) We can use natural language consisting of some mathematical equations.

2) We can use graphic representations such as flowcharts.

3) We can use combination of C and English language constructs.

• Algorithm 1.1: Selection sort algorithm.

for(i=0;i<n;i++)

{

Examine list[i] to list[n-1] and suppose that the

smallest integer is at list[min]; Interchange list[i]

and list[min];

}

Algorithm 1.2: finding the smallest integer.

assume that minimum is list[i]

compare current minimum with list[i+1] to list[n-1] and find

smaller number and make it the new minimum

• Algorithm 1.3: Binary search.

Assume that we have n > 1 distinct integers that are already sorted and stored in the array list.

That is, list[0]<= list[1]…list[n]

We must figure out if an integer searchnum is in this list.

 If it is we should return an index, i, such that list[i] = searchnum.

Ifsearchnum is not present, we should return -1.

Since the list is sorted we may use the following method to search for the value. Let left and

right, respectively, denote the left and right ends of the list to be searched. Initially, left = 0

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 8

and right = n-l. Let middle = (left+right)/2 be the middle position in the list. If we compare

list [middle] with searchnum, we obtain one of three results:

assumption :sorted n(≥1) distinct integers stored in the array list

return i if list[i] = searchnum;

-1 if no such index exists

denote left and right as left and right ends of the list to

be searched (left=0 & right=n-1) let middle=(left+right)/2

middle position in the list

compare list[middle] with searchnum and adjust

left or right compare list[middle] with

searchnum

1) searchnum <

list[middle] set

right to middle-1

2) searchnum =

list[middle] return

middle

3) searchnum >

list[middle] set

left to middle+1

if searchnum has not been found and there are more integers to

check recalculate middle and continue search

int compare(int x, int y)

{

if (x< y) return -1;

else if (x== y) return 0; else return 1;

}

• Algorithm 1.4: Permutations

given a set of n(≥1)

elements print out all

possible permutations of

this set

e.g. if set {a,b,c} is given,
then set of permutations is {(a,b,c), (a,c,b), (b,a,c),
(b,c,a), (c,a,b), (c,b,a)}

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 9

RECURSIVE ALGORITHMS

• A function calls itself either directly or indirectly during execution.

 • Recursive-algorithms when compared to iterative-algorithms are normally compact and

easy to understand.

• Various types of recursion:

1) Direct recursion: where a recursive-function invokes itself.

2) Indirect recursion: A function which contains a call to another function which in

turn calls another function and so on and eventually calls the first function.

For example:

1. FACTORIAL

“The product of the positive integers from 1 to n, is called "n factorial" and is denoted by

n!” n! = 1*2 * 3 ... (n - 2)*(n - 1)*n

It is also convenient to define 0! = 1, so that the function is defined for all nonnegative

integers.

Definition: (Factorial Function)

a) If n = 0, then n! = 1.

b) If n > 0, then n! = n*(n - 1)!

Observe that this definition of n! is recursive, since it refers to itself when it uses (n - 1)!

(a) The value of n! is explicitly given when n = 0 (thus 0 is the base value)

(b) The value of n! for arbitrary n is defined in terms of a smaller value of n which is

closer to the base value 0.

The following are two procedures that each calculate n factorial .

Using for loop: This procedure evaluates N! using an iterative loop process

Procedure: FACTORIAL (FACT, N)

This procedure calculates N! and returns the value in the variable FACT.

If N = 0, then: Set FACT: = 1, and Return.

Set FACT: = 1. [Initializes FACT for loop.]

Repeat for K = 1 to N.

void f1() void f2() void f3()

{ { {

....

f2(); f3(); f1();

} } }

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 10

Set FACT: = K*FACT.

[End of loop.]

Return.

Using recursive function: This is a recursive procedure, since it contains a call to itself

Procedure: FACTORIAL (FACT, N)

This procedure calculates N! and returns the value in the variable FACT.

If N = 0, then: Set FACT: = 1, and Return.

Call FACTORIAL (FACT, N - 1).

Set FACT: = N*FACT.

Return.

int fact(int n) //to find factorial of a number

{

if(n==0)

 return 1;

return n*fact(n-1);

}

2. BINARY SEARCH:

To transform function into a recursive one, we must

(1) establish boundary conditions that terminate the recursive calls, and

(2) implement the recursive calls so that each call brings us one step closer to a solution

int binsearch(int list[], int searchnum, int left, int right)

{ // search list[0]<= list[1]<=...<=list[n-1] for searchnum

int middle;

if (left<= right)

{

middle= (left+ right)/2;

switch(compare(list[middle], searchnum))

{

case -1:return binsearch(list, searchnum, middle+1, right);

case 0: return middle;

case 1: return binsearch(list, searchnum, left, middle- 1);

}

}

return -1;

}

int compare(int x, int y)

{

if (x< y) return -1;

else if (x== y) return 0; else

return 1;

}

Recursive Implementation of Binary Search

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 11

3. PERMUTATIONS:

Given a set of n > 1 elements, print out all possible permutations of this set. For example, if

the set is (a, b. c), then the set of permutations is {(a, b, c), (a, c, b), (b, a, c), (b, c, d), (c, a,

b),(c, b, a)}.

It is easy to see that, given n elements, there are n! permutations. We can obtain a simple

algorithm for generating the permutations if we look at the set (a, b, c, d). We can construct

the set of permutations by printing:

1. a followed by all permutations of (b, c, d)

2. b followed by all permutations of (a, c, d)

3. c followed by all permutations of (a, b, d)

4. d followed by all permutations of (a, b, c)

 The clue to the recursive solution is the phrase "followed by all permutations." It implies

that we can solve the problem for a set with n elements if we have an algorithm that

works on n - 1 elements. We assume that list is a character array. Notice that it recursively

generates permutations until i = n. The initial function call is perm(list. 0, n-1);

void perm(char *list,int i,int n)

{

int j,temp; if(i==n)

{

for(j=0;j<=n;j++) printf(“%c”, list[j]); printf(“

“);

}

else

{

for(j=i;j<=n;j++)

{

SWAP(list[i],list[j],temp); perm(list,i+1,n);

SWAP(list[i],list[j],temp);

}

}

}

Recursive permutations generator

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 12

4.TOWER OF HANOI

 Problem description

 Suppose three pegs, labeled A, Band C, are given, and suppose on peg A a finite number

n of disks with decreasing size are placed.

The objective of the game is to move the disks from peg A to peg C using peg B as an

auxiliary. The rules of the game are as follows:

1. Only one disk may be moved at a time. Only the top disk on any peg may be

moved to

any other peg.

2. At no time can a larger disk be placed on a smaller disk.

We write A→B to denote the instruction "Move top disk from peg A to peg B"

Example: Towers of Hanoi problem for n = 3.

Solution: Observe that it consists of the following seven moves

1. Move top disk from peg A to peg C.

2. Move top disk from peg A to peg B.

3. Move top disk from peg C to peg B.

4. Move top disk from peg A to peg C.

5. Move top disk from peg B to peg A.

6. Move top disk from peg B to peg C.

7. Move top disk from peg A to peg C.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 13

In other words,

n=3: A→C, A→B, C→B, A→C, B→A, B→C, A→C

For completeness, the solution to the Towers of Hanoi problem for n = 1

and n = 2 n=l: A→C

n=2: A→B, A→C, B→C

The Towers of Hanoi problem for n > 1 disks may be reduced to the following sub-

problems:

(1) Move the top n - 1 disks from peg A to peg B

(2) Move the top disk from peg A to peg C: A→C.

(3) Move the top n - 1 disks from peg B to peg C.

The general notation

• TOWER (N, BEG, AUX, END) to denote a procedure which moves the top n

disks from the initial peg BEG to the final peg END using the peg AUX as an

auxiliary.

• When n = 1, the solution:

TOWER (1, BEG, AUX, END) consists of the single instruction BEG→END

• When n > 1, the solution may be reduced to the solution of the following

three sub- problems:

(a) TOWER (N - I, BEG, END, AUX)

(b) TOWER (l, BEG, AUX, END) or BEG → END

(c) TOWER (N - I, AUX, BEG, END)

void Hanoi(int n, char x, char y, char z)

{

if (n > 1)

{

Hanoi(n-1,x,z,y);

printf("Move disk %d from %c to %c.\n",n,x,z);

Hanoi(n-1,y,x,z);

}

else

{

printf("Move disk %d from %c to %c.\n",n,x,z);

}

}

Recursive Implementation of tower of Hanoi

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 14

Example: Towers of Hanoi problem for n = 4

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 15

ARRAYS

• An Array is defined as, an ordered set of similar data items. All the data items of an

array are stored in consecutive memory locations.

• The data items of an array are of same type and each data items can be accessed using

the same name but different index value.

• An array is a set of pairs, such that each index has a value associated with it. It can be

called as corresponding or a mapping

Ex: <index, value>

 < 0 , 25 > list[0]=25

 < 1 , 15 > list[1]=15

 < 2 , 20 > list[2]=20

 < 3 , 17 > list[3]=17

 < 4 , 35 > list[4]=35

Here, list is the name of array. By using, list [0] to list [4] the data items in list can be accessed.

Structure Array is

objects: A set of pairs <index, value> where for each value of

index there is a value from the set item. Index is a finite

ordered set of one or more dimensions, for example,

{0, … , n-1} for one dimension,

{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} for

two dimensions, etc.

Functions:

for all A  Array, i index, x  item, j, size  integer
Array Create(j, list) ::= return an array of j dimensions where

list is a j-tuple whose ith element is

the size of the ith dimension. Items are

undefined.

Item Retrieve(A, i) ::= if (i index)

return the item associated with

index value i in array A

else

return error

Array Store(A, i, x) ::= if (i in index)

return an array that is identical

to array A except the new pair

<i, x> has been inserted

else

return error

end array

Abstract data type Array

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 16

#define MAX_SIZE 100

float sum(float [], int);

float input[MAX_SIZE], answer;

int i;

void main (void)

{

for (i = 0; i < MAX_SIZE; i++)

input[i] = i;

answer = sum(input, MAX_SIZE);

printf("The sum is: %f\n", answer);

}

float sum(float list[], int n)

{

int i;

float tempsum = 0;

for (i = 0; i < n; i++)

tempsum += list[i];

return tempsum;

}

Program to find sum of n numbers

Example: Program to find sum of n numbers

ARRAYS IN C

 • A one-dimensional array can be declared as follows:

int list[5]; //array of 5 integers

int *plist[5]; //array of 5 pointers to integers

 • Compiler allocates 5 consecutive memory-locations for each of the variables 'list' and

'plist'.

 • Address of first element list[0] is called base-address.

• Memory-address of list[i] can be computed by compiler as

+i*sizeof(int) where =base address

Program to print both address of ith element of given array & the value found at that

address:

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 17

void print1(int *ptr, int rows)

{

/* print out a one-dimensional array using a pointer

*/ int i;

printf(“Address Contents\n”);

for (i=0; i < rows; i++)

printf(“%8u%5d\n”, ptr+i, *(ptr+i));

printf(“\n”);

}

void main()

{

int one[] = {0, 1, 2, 3, 4};

print1(&one[0], 5)

}

Program to print both address of ith element of given array

Output: one dimensional array addressing

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 18

DYNAMICALLY ALLOCATED ARRAYS ONE-DIMENSIONAL ARRAYS

• When writing programs, sometimes we cannot reliably determine how large an array must

be.

• A good solution to this problem is to

→ defer this decision to run-time &

→ allocate the array when we have a good estimate of required array-size

• Dynamic memory allocation can be performed as follows:

int i,n,*list;

printf("enter the number of numbers to generate");

scanf("%d",&n);

if(n<1)

{

printf("improper value");

exit(0);

}

MALLOC(list, n*sizeof(int));

• The above code would allocate an array of exactly the required size and hence would not

result in any wastage.

TWO DIMENSIONAL ARRAYS

• These are created by using the concept of array of arrays.

• A 2-dimensional array is represented as a 1-dimensional array in which each element has a

pointer to a 1-dimensional array as shown below

 int x[5][7]; //we create a 1-dimensional array x whose length is 5;

 //each element of x is a 1-dimensional array whose length is 7.

 • Address of x[i][j] = x[i]+j*sizeof(int)

 FIG: Array-of-arrays representation

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 19

#include <stdlib.h> int

**array;

array = malloc(nrows * sizeof(int *));

if(array == NULL)

{

printf("out of memory\n"); exit

or return

}

for(i = 0; i < nrows; i++)

{

array[i] = malloc(ncolumns * sizeof(int));

if(array[i] == NULL)

{

printf("out of memory\n"); exit

or return

}

}

Prg: Dynamically create a two-dimensional array

CALLOC

• These functions → allocate user-specified amount of memory & → initialize the allocated

memory to 0.

• On successful memory-allocation, it returns a pointer to the start of the new block. On

failure, it returns the value NULL.

• Memory can be allocated using calloc as shown below:

int *p;

p=calloc(n, sizeof(int)); //where n=array size

• To create clean and readable programs, a CALLOC macro can be created as shown below:

#define CALLOC(p,n,s)

if((p=calloc(n,s))==NULL)

{

printf("insufficient memory");

exit(1);

}

REALLOC

 • These functions resize memory previously allocated by either malloc or calloc. For

example,

realloc(p,s); //this changes the size of memory-block pointed at by p to s < oldSize, the

rightmost oldSize-s bytes of old block are freed..

• When s>oldSize, the additional s-oldSize have an unspecified value and when s

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 20

• On successful resizing, it returns a pointer to the start of the new block. On failure, it returns

the value NULL.

 • To create clean and readable programs, the REALLOC macro can be created as shown

below:

#define REALLOC(p,s)

if((p=realloc(p,s))==NULL)

{

printf("insufficient memory");

exit(0);

}

STRUCTURES AND UNIONS

Structures

Arrays are collections of data of the same type. In C there is an alternate way of grouping data

that permits the data to vary in type. This mechanism is called the struct, short for structure. A

structure (called a record in many other programming languages) is a collection of data items,

where each item is identified as to its type and name.

struct {

char name[10];

int age;

float salary;

} person;

➢ Creates a variable whose name is person and that has three fields:

• a name that is a character array

• an integer value representing the age of the person

• a float value representing the salary of the individual

➢ Dot operator(.) is used to access a particular member of the structure.

strcpy(person.name,"james") ;

person.age

 person.salary = 35000;

➢ We can create our own structure data types by using the typedef statement as below:

typedef struct human—

being {

char name[10];

int age;

float salary;

 };

-OR-

typedef struct {

char name[10];

int age;

float salary;

} human-being;

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 21

➢ Variables can be declared as follows:

 humanBeing person1,person2;

➢ Structures cannot be directly checked for equality or inequality. So, we can write a function to

do this.

int humans—equal(human—being personl,

human—being person2)

{ /* being otherwise return FALSE

if (strcmp(personl.name, person2.name)) return FALSE;

if (personl.age != person2.age) return FALSE;

if (personl.salary 1= person2.salary) return FALSE;

return TRUE;

return TRUE if personl and person2 are the same human

*/

}

if (humans—equal(personl,person2))

printf("The two human beings are the same\n"); else

printf{"The two human beings are not the same\n");

PRG: Function to check equality of structures

➢ We can embed a structure within a structure.

typedef struct {

int month;

int day;

int year; } date;

typedef struct human—being {

char name[10];

int age;

float salary;

date dob;

};

➢ A person born on February 11, 1944, would have the values for the date struct set as:

personl.dob.month = 2;

personl.dob.day = 11; personl.dob.year = 1944;

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 22

Unions

➢ This is similar to a structure, but the fields of a union must share their memory space.

This means that only one field of the union is "active" at any given time.

typedef struct sex—type {

enum tag—field {female, male

} sex;

union {

int children;

int beard ;

} u;

};

typedef struct human—being {

char name[10];

int age;

float salary;

date dob;

sex—type sex—info;

};

human—being personl, person2;

➢ We could assign values to person! and person2 as:

personl.sex—info.sex = male;

personl.sex—info.u.beard = FALSE;

and

person2.sex—info.sex = female;

person2.sex—info.u.children - 4;

➢ we first place a value in the tag field. This allows us to determine which field in the union

is active. We then place a value in the appropriate field of the union.

Internal Implementation Of Structures

• The size of an object of a struct or union type is the amount of storage necessary to

represent the largest component, including any padding that may be required.

• Structures must begin and end on the same type of memory boundary, for example, an

even byte boundary or an address that is a multiple of 4, 8, or 16.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 23

Self-Referential Structures

• A self-referential structure is one in which one or more of its components is a pointer to

itself.

• These require dynamic storage management routines (malloc & free) to explicitly obtain

and release memory.

typedef struct list

{

char data;

list *link; //list is a pointer to a list structure

} ;

• Consider three structures and values assigned to their respective fields:

List item1,item2,item3;

item1.data='a';

item2.data='b';

item3.data='c';

item1.link=item2.link=item3.link=NULL;

• We can attach these structures together as follows

item1.link=&item2;

item2.link=&item3;

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 24

Structure Polynomial is

objects: p(x)=a1xe + . . anxe ; a set of ordered pairs of <ei,ai> where

ai in Coefficients and ei in Exponents, ei are integers >= 0

functions:

for all poly, poly1, poly2  Polynomial, coef Coefficients,

expon  Exponents Polynomial Zero() ::= return the
polynomial, p(x) = 0

Boolean IsZero(poly) ::= if (poly)

return FALSE

else

return TRUE

Coefficient Coef(poly, expon) ::= if (expon  poly)
return its coefficient

else

return Zero

Exponent Lead_Exp(poly) ::= return the largest exponent in poly

Polynomial Attach(poly,coef, expon) ::= if (expon  poly)
return error

else

return the polynomial poly

with the term <coef, expon>

inserted

Polynomial Remove(poly, expon)::= if (expon  poly)
return the polynomial poly with

the term whose exponent is expon

deleted

else

return error

Polynomial SingleMult(poly, coef, expon) ::=

 return the polynomial poly•coef•xexpon

Polynomial Add(poly1, poly2) ::=

 return the polynomial poly1 +poly2

Polynomial Mult(poly1, poly2)::=

 return the polynomial poly1 • poly2

End Polynomia

POLYNOMIALS ABSTRACT DATA TYPE

• A polynomial is a sum of terms, where each term has a form axe , where x=variable,

a=coefficient and e=exponent.

• For ex, A(x)=3x20+2x5+4 and B(x)=x4+10x3+3x2+1

• The largest(or leading) exponent of a polynomial is called its degree.

• Assume that we have 2 polynomials,

 A(x)= ∑ai x
 i & B(x)= ∑bi x i then A(x)+B(x)= ∑(ai + bi)x

i

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 25

POLYNOMIAL REPRESENTATION: FIRST METHOD

#define MAX_DEGREE 100

typedef struct

{

int degree;

float coef[MAX_DEGREE];

}polynomial;

polynomial a;

/* d =a + b, where a, b, and d are polynomials */

d = Zero()

while (! IsZero(a) && ! IsZero(b))

do

{

switch COMPARE (Lead_Exp(a), Lead_Exp(b))

{

case -1: d = Attach(d, Coef (b, Lead_Exp(b)), Lead_Exp(b));

 b = Remove(b, Lead_Exp(b));

 break;

case 0: sum = Coef (a, Lead_Exp (a)) + Coef (b,Lead_Exp(b));

if (sum)

{

Attach (d, sum, Lead_Exp(a));

a = Remove(a , Lead_Exp(a));

b = Remove(b , Lead_Exp(b));

}

break;

case 1: d = Attach(d, Coef (a, Lead_Exp(a)), Lead_Exp(a));

 a = Remove(a, Lead_Exp(a));

}

}

insert any remaining terms of a or b into d

Initial version of padd function

• If a is of type ‘polynomial’ then A(x)= ∑ai x
i can be represented as:

a.degree=n

a.coeff[i]=an-i

• In this representation, we store coefficients in order of decreasing exponents, such that

a.coef[i] is the coefficient of xn-i provided a term with exponent n-i exists; otherwise,

a.coeff[i]=0

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 26

• Disadvantage: This representation wastes a lot of space. For instance, if

a.degree<<MAX_DEGREE and polynomial is sparse, then we will not need most of the

positions in a.coef[MAX_DEGREE] (sparse means number of terms with non-zero

coefficient is small relative to degree of the polynomial).

POLYNOMIAL REPRESENTATION: SECOND METHOD

#define MAX_TERMS 100

typedef struct polynomial

{

float coef;

int expon;

}polynomial;

polynomial terms[MAX_TERMS];

int avail=0;

• A(x)=2x1000+1 and B(x)=x4+10x3+3x2+1 can be represented as shown below.

 Array representation of two polynomials

• startA & startB give the index of first term of A and B respectively . finishA & finishB give

the index of the last term of A & B respectively avail gives the index of next free location in

the array.

• Any polynomial A that has ‘n’ non-zero terms has startA & finishA such that

finishA=startA+n-1

• Advantage: This representation solves the problem of many 0 terms since A(x)-2x1000+1

uses only 6 units of storage (one for startA, one for finishA, 2 for the coefficients and 2 for

the exponents)

• Disadvantage: However, when all the terms are non-zero, the current representation requires

about twice as much space as the first one.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 27

POLYNOMIAL ADDITION:

void padd (int starta, int finisha, int startb, int finishb,int *

startd, int *finishd)

{

/* add A(x) and B(x) to obtain D(x) */

float coefficient;

*startd = avail;

while (starta <= finisha && startb <= finishb)

{

switch (COMPARE(terms[starta].expon, terms[startb].expon))

{

case -1: /* a expon < b expon */

attach(terms[startb].coef,

terms[startb].expon); startb++

break;

case 0: /* equal exponents */

coefficient = terms[starta].coef +

terms[startb].coef; if (coefficient)

attach (coefficient, terms[starta].expon);

starta++;

startb++; break;

case 1: /* a expon > b expon */

attach(terms[starta].coef,

terms[starta].expon); starta++;

}

/* add in remaining terms of A(x) */

for(; starta <= finisha; starta++)

attach(terms[starta].coef,

terms[starta].expon);

/* add in remaining terms of B(x) */

for(; startb <= finishb; startb++)

attach(terms[startb].coef,

terms[startb].expon);

*finishd =avail -1;

}

}

Function to add two polynomials

void attach(float coefficient, int exponent)

{

/* add a new term to the polynomial */

if (avail >= MAX_TERMS)

{

fprintf(stderr, “Too many terms in the polynomial\n”);

exit(1);

}

terms[avail].coef = coefficient;

terms[avail++].expon = exponent;

}

Function to add a new term

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 28

ANALYSIS

• Let m and n be the number of non-zero terms in A and B respectively.

 • If m>0 and n>0, the while loop is entered. At each iteration, we increment the value of startA or

startB or both.

• Since the iteration terminates when either startA or startB exceeds finishA or finishB respectively,

the number of iterations is bounded by m+n-1. This worst case occurs when A(x)=∑ x2i and

B(x)=∑x2i+1

• The asymptotic computing time of this algorithm is O(n+m)

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 29

Structure Sparse_Matrix is

objects: a set of triples, <row, column, value>, where row and column are

integers and form a unique combination, andvalue comes from the set

item.

functions:

for all a, b  Sparse_Matrix, x  item, i, j, max_col, max_row  index

Sparse_Marix Create(max_row, max_col) ::=

return a Sparse_matrix that can hold up to max_items = max

_row  max_col and whose maximum row size is max_row and

whose maximum column size is max_col.

Sparse_Matrix Transpose(a) ::=

return the matrix produced by interchanging the row and

column value of every triple.

Sparse_Matrix Add(a, b) ::=

if the dimensions of a and b are the same

return the matrix produced by adding corresponding items,

namely those with identical row and column values.

else

return error

Sparse_Matrix Multiply(a, b) ::=

if number of columns in a equals number of rows in b

return the matrix d produced by multiplying a by b according

to the formula:d [i] [j]= (a[i][k]•b[k][j]) where d (i, j)

is the (i,j)th element

else

return error.

End Sparse_Matrix

SPARSE MATRIX REPRESENTATION

 • We can classify uniquely any element within a matrix by using the triple . Therefore, we

can use an array of triples to represent a sparse matrix.

• Sparse matrix contains many zero entries.

• When a sparse matrix is represented as a 2-dimensional array, we waste space For ex, if

100*100 matrix contains only 100 entries then we waste 9900 out of 10000 memory spaces.

• Solution: Store only the non-zero elements.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 30

SpareMatrix Create(maxRow,maxCol) ::=

#define MAX_TERMS 101

typedef struct term

{

int col;

int row;

int value;

} term;

 term a[MAX_TERMS];

SPARSE MATRIX REPRESENTATION

• We can classify uniquely any element within a matrix by using the triple <row,col,value>.

Therefore, we can use an array of triples to represent a sparse matrix

Sparse matrix and its transpose stored as triples

• a[0].row contains the number of rows;

 a[0].col contains number of columns and

 a[0].value contains the total number of nonzero entries.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 31

TRANSPOSING A MATRIX

• To transpose a matrix ,we must interchange the rows and columns.

 • Each element a[i][j] in the original matrix becomes element b[j][i] in the transpose matrix.

 • Algorithm To transpose a matrix:

for each row i

 take element<i,j,value> and store it

 as element<i,j,value> of the transpose;

for all elements in column j

 place element<i,j,value> in

 element<i,j,value>

void transpose (term a[], term b[])

{

/* b is set to the transpose of a */

int n, i, j, currentb;

n = a[0].value; /* total number of elements */

b[0].row = a[0].col; /* rows in b = columns in a */

b[0].col = a[0].row; /*columns in b = rows in a */

b[0].value = n;

if (n > 0)

{ /*non zero matrix */

currentb = 1;

for (i = 0; i < a[0].col; i++) /* transpose by columns

 in a */

for(j = 1; j <= n; j++) /* find elements from the

 current column */

if (a[j].col == i)

{/* element is in current column, add it to b */

b[currentb].row = a[j].col;

b[currentb].col = a[j].row;

b[currentb].value = a[j].value;

currentb++
}

}

}

 Transpose of a sparse matrix

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 32

void mmult (term a[], term b[], term d[])

{ /* multiply two sparse matrices */

int i, j, column, totalb = b[].value, totald = 0;

int rows_a = a[0].row, cols_a = a[0].col, totala = a[0].value;

int cols_b = b[0].col,

int row_begin = 1, row = a[1].row, sum =0;

int new_b[MAX_TERMS][3];

if (cols_a != b[0].row)

{

fprintf (stderr, “Incompatible matrices\n”);

exit (1);

}

fast_transpose(b, new_b);

a[totala+1].row = rows_a; /* set boundary condition */

new_b[totalb+1].row = cols_b;

new_b[totalb+1].col = 0;

for (i = 1; i <= totala;)

{

column = new_b[1].row;

for (j = 1; j <= totalb+1;)

{ /* mutiply row of a by column of b */

if (a[i].row != row)

{

storesum(d, &totald, row, column, &sum);

i = row_begin;

for (; new_b[j].row == column; j++);

column =new_b[j].row

}

else

switch (COMPARE (a[i].col, new_b[j].col))

{

case -1: i++; break; /* go to next term in a */

case 0: /* add terms, go to next term in a

 and b */

sum += (a[i++].value * new_b[j++].value);

case 1: j++ /* advance to next term in b*/

}

} /* end of for j <= totalb+1 */

for (; a[i].row == row; i++);

row_begin = i;

row = a[i].row;

} /* end of for i <=totala */

d[0].row = rows_a;

d[0].col = cols_b;

d[0].value = totald;

}

Sparse matrix multiplication

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 33

void storesum(term d[], int *totald, int row, int column, int *sum)

{

/* if *sum != 0, then it along with its row and column position is

stored as the *totald+1 entry in d */

if (*sum)

if (*totald < MAX_TERMS)

{

d[++*totald].row = row;

d[*totald].col = column;

d[*totald].value = *sum;

}

else

{

fprintf(stderr, ”Numbers of terms in product exceed %d\n”,

MAX_TERMS); exit(1);

}

}

}

storesum function

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 34

THE STRING ABSTRACT DATA TYPE

The string, whose component elements are characters. As an ADT, we define a string to have

the form, S = So, .. . , where Si are characters taken from the character set of the

programming language. If n = 0, then S is an empty or null string.There are several useful

operations we could specify for strings.

we represent strings as character arrays terminated with the null character \0.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 35

String insertion:

Assume that we have two strings, say string 1 and string 2, and that we want to insert string 2 into

string 1 starting at the ith position of string 1. We begin with the declarations:

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 36

Pattern Matching

Assume that we have two strings, string and pat, where pat is a pattern to be searched for in

string. The easiest way to determine if pat is in string is to use the built-in function strstr. If

we have the following declarations:

The call (t = strstr(string,pat)) returns a null pointer if pat is not in string.

If pat is in string, t holds a pointer to the start of pat in string. The entire string beginning at

position t is printed out.

Although strstr seems ideally suited to pattern matching, there are two reasons why we may

want to develop our own pattern matching function:

• The function strstr is new to ANSI C. Therefore, it may not be available with the

compiler we are using.

• There are several different methods for implementing a pattern matching function.

The easiest but least efficient method sequentially examines each character of the

string until it finds the pattern or it reaches the end of the string. If pat is not in string,

this method has a computing time of O(n . m) where n is the length of pat and w is the

length of string. We can do much better than this, if we create our own pattern

matching function.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 37

Knuth, Morris, Pratt Pattern Matching algorithm.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 38

THE STACK ABSTRACT DATA TYPE

STACK

• This is an ordered-list in which insertions(called push) and deletions(called pop) are made at

one end called the top

• Since last element inserted into a stack is first element removed, a stack is also known as a

LIFO list(Last In First Out).

When an element is inserted in a stack, the concept is called push, and when an element is

removed from the stack, the concept is called pop.

Trying to pop out an empty stack is called underflow and trying to push an element in a full

stack is called overflow.

: Inserting and deleting elements in a stack

As shown in above figure, the elements are added in the stack in the order A, B, C, D, E, then

E is the first element that is deleted from the stack and the last element is deleted from stack

is A. Figure illustrates this sequence of operations.

Since the last element inserted into a stack is the first element removed, a stack is also known

as a Last-In-First-Out (LIFO) list.

SYSTEM STACK

A stack used by a program at run-time to process function-calls is called system-stack.

• When functions are invoked, programs

 → create a stack-frame (or activation-record) &

 → place the stack-frame on top of system-stack

• Initially, stack-frame for invoked-function contains only

→ pointer to previous stack-frame &

 → return-address

• The previous stack-frame pointer points to the stack-frame of the invoking-function while

return-address contains the location of the statement to be executed after the function

terminates.

 • If one function invokes another function, local variables and parameters of the invoking-

function are added to its stack-frame.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 39

 • A new stack-frame is then

→ created for the invoked-function &

→ placed on top of the system-stack

• When this function terminates, its stack-frame is removed (and processing of the invoking-

function, which is again on top of the stack, continues).

• Frame-pointer(fp) is a pointer to the current stack-frame.

System stack after function call

ARRAY REPRESENTATION OF STACKS

• Stacks may be represented in the computer in various ways such as one-way

linked list (Singly linked list) or linear array.

• Stacks are maintained by the two variables such as TOP and MAX_STACK_SIZE.

• TOP which contains the location of the top element in the stack. If TOP= -1,

then it indicates stack is empty.

• MAX_STACK_SIZE which gives maximum number of elements that can be

stored in stack.

Stack can represented using linear array as shown below

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 40

Stack ADT

• The following operations make a stack an ADT. For simplicity, assume the data is an integer

type.

• Main stack operations

 – Push (int data): Inserts data onto stack.

 – int Pop(): Removes and returns the last inserted element from the stack.

• Auxiliary stack operations

 – int Top(): Returns the last inserted element without removing it.

 – int Size(): Returns the number of elements stored in the stack.

 – int IsEmptyStack(): Indicates whether any elements are stored in the stack or not.

 – int IsFullStack(): Indicates whether the stack is full or not.

• The easiest way to implement this ADT is by using a one-dimensional array, say, stack

[MAX-STACK-SIZE], where MAX STACK SIZE is the maximum number of entries.

• The first, or bottom, element of the stack is stored in stack[0], the second in stack[1] and

the ith in stack [i-1].

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 41

• Associated with the array is a variable, top, which points to the top element in the stack.

Initially, top is set to -1 to denote an empty stack.

• we have specified that element is a structure that consists of only a key field.

1. CREATE STACK:

The element which is used to insert or delete is specified as a structure that consists of

only a key field.

1. Boolean IsEmpty(Stack)::= top < 0;

2. Boolean IsFull(Stack)::= top >= MAX_STACK_SIZE-1;

The IsEmpty and IsFull operations are simple, and is implemented directly in the

program push and pop functions. Each of these functions assumes that the variables

stack and top are global.

Add an item to a stack

• Function push() checks to see if the stack is full. If it is, it calls stackFull, which prints an

error message and terminates execution.

• When the stack is not full, we increment top and assign item to stack[top].

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 42

Delete an item in a stack

For deletion, the stack-empty function should print an error message and return an item of

type element with a key field that contains an error code.

STACK USING DYNAMIC ARRAYS

• Shortcoming of static stack implementation: is the need to know at compile-time, a good

bound(MAX_STACK_SIZE) on how large the stack will become.

• This shortcoming can be overcome by

→ using a dynamically allocated array for the elements &

→ then increasing the size of the array as needed

• Initially, capacity=1 where capacity=maximum no. of stack-elements that may be stored in

array.

• The CreateS() function can be implemented as follows

Stack CreateS(max-stack-size') ::=

 #define MAX—STACK—SIZE 100 /*maximum stack size */

typedef struct

{

 int key;

 /* other fields */

} element;

element stack[MAX—STACK—SIZE];

int top - -1;

Boolean IsEmpty(Stack) ::= top <0;

Boolean IsFulI(Stack) ::= top >= MAX-STACK-SIZE-1;

• Once the stack is full, realloc() function is used to increase the size of array.

 • In array-doubling, we double array-capacity whenever it becomes necessary to increase the

capacity of an array.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 43

ANALYSIS

• In worst case, the realloc function needs to

→ allocate 2*capacity*sizeof(*stack) bytes of memory and

→ copy capacity*sizeof(*stack) bytes of memory from the old array into the new one.

• The total time spent over all array doublings = O(2k) where capacity=2k

 • Since the total number of pushes is more than 2k-1 , the total time spend in array doubling

is O(n) where n=total number of pushes.

STACK APPLICATIONS: POLISH NOTATION

Expressions: It is sequence of operators and operands that reduces to a single value after

evaluation is called an expression.

X = a / b – c + d * e – a * c

In above expression contains operators (+, –, /, *) operands (a, b, c, d, e).

Expression can be represented in in different format such as

• Prefix Expression or Polish notation

• Infix Expression

• Postfix Expression or Reverse Polish notation

• Infix Expression: In this expression, the binary operator is placed in-between the

operand. The expression can be parenthesized or un- parenthesized.

Example: A + B

Here, A & B are operands and + is operand

• Prefix or Polish Expression: In this expression, the operator appears before its

operand.

Example: + A B

Here, A & B are operands and + is operand

• Postfix or Reverse Polish Expression: In this expression, the operator appears

after its operand.

Example: A B +

Here, A & B are operands and + is operand

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 44

Precedence of the operators

The first problem with understanding the meaning of expressions and statements is

finding out the order in which the operations are performed.

Example: assume that a =4, b =c =2, d =e =3 in below expression

X = a / b – c + d * e – a * c

((4/2)-2) + (3*3)-(4*2) (4/ (2-2 +3)) *(3-4)*2

=0+9-8

=1

OR = (4/3) * (-1) * 2

= -2.66666

The first answer is picked most because division is carried out before subtraction, and

multiplication before addition. If we wanted the second answer, write expression

differently using parentheses to change the order of evaluation

X= ((a / (b – c + d)) * (e – a) * c

In C, there is a precedence hierarchy that determines the order in which operators are

evaluated. Below figure contains the precedence hierarchy for C.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 45

• The operators are arranged from highest precedence to lowest. Operators with

highest precedence are evaluated first.

• The associativity column indicates how to evaluate operators with the same

precedence. For example, the multiplicative operators have left-to-right

associativity. This means that the expression a * b / c % d / e is equivalent to (

(((a * b) / c) % d) / e)

• Parentheses are used to override precedence, and expressions are always evaluated

from the innermost parenthesized expression first

INFIX TO POSTFIX CONVERSION

An algorithm to convert infix to a postfix expression as follows:

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 46

1. Fully parenthesize the expression.

2. Move all binary operators so that they replace their corresponding right

parentheses.

3. Delete all parentheses.

Example: Infix expression: a/b -c

+d*e -a*c Fully parenthesized :

((((a/b)-c) + (d*e))-a*c))

: a b / e – d e * + a c *

Example [Parenthesized expression]: Parentheses make the translation process

more difficult because the equivalent postfix expression will be parenthesis-free.

The expression a*(b +c)*d which results abc +*d* in postfix. Figure shows the

translation process.

•

The analysis of the examples suggests a precedence-based scheme for stacking and

unstacking operators.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 47

• The left parenthesis complicates matters because it behaves like a low-precedence

operator when it is on the stack and a high-precedence one when it is not. It is

placed in the stack whenever it is found in the expression, but it is unstacked only

when its matching right parenthesis is found.

• There are two types of precedence, in-stack precedence (isp) and incoming

precedence (icp).

The declarations that establish the precedence’s are:

/* isp and icp arrays-index is value of precedence lparen rparen, plus, minus, times,

divide, mod, eos */

int isp[] = {0,19,12,12,13,13,13,0};

int icp[] = {20,19,12,12,13,13,13,0};

void postfix(void)

{

char

symbol;

precede

nce

token;

int n = 0,top = 0; /* place eos on

stack */ stack[0] = eos;

for (token = getToken(&symbol, &n); token != eos; token =

getToken(&symbol,& n))

{

if (token == operand)

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 48

printf("%c",

symbol); else if

(token == rparen)

{

while (stack[top] !=

lparen)

printToken(p

op());

pop();

}

else{

while(isp[stack[top]] >=

icp[token])

printToken(pop());

push(token);

}

}

while((token = pop ())!= eos)

printToken(token);

printf("\n");

}

Program: Function to convert from infix to postfix

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 49

EVALUATION OF POSTFIX EXPRESSION

• The evaluation process of postfix expression is simpler than the evaluation

of infix expressions because there are no parentheses to consider.

• To evaluate an expression, make a single left-to-right scan of it. Place the

operands on a stack until an operator is found. Then remove from the stack, the

correct number of operands for the operator, perform the operation, and place

the result back on the stack and continue this fashion until the end of the

expression. We then remove the answer from the top of the stack.

vtucode.in

DATA STRUCTURES-BCS304 MODULE 1

 50

precedence getToken(char *symbol, int *n)

{

*symbol =

expr[(*n)++]; switch

(*symbol)

{

case '(' : return lparen;

case ')' : return rparen;

case '+' : return plus;

case '-' : return minus;

case '/' : return divide;

case '*' : return times;

case '%' : return mod;

case ' ' : return eos;

default: return operand;

}

}

Program: Function to get a token from the input string

• The function eval () contains the code to evaluate a postfix expression. Since an

operand (symbol) is initially a character, convert it into a single digit integer.

• To convert use the statement, symbol-'0'. The statement takes the ASCII value

of symbol and subtracts the ASCII value of '0', which is 48, from it. For example,

suppose symbol = '1. The character '1' has an ASCII value of 49. Therefore, the

statement symbol-'0' produces as result the number 1.

• The function getToken(), obtain tokens from the expression string. If the token is

an operand, convert it to a number and add it to the stack. Otherwise remove two

operands from the stack, perform the specified operation, and place the result back

on the stack. When the end of expression is reached, remove the result from the

stack.

vtucode.in

