Database Management System [21CS53]

Module 5

Chapter 1: Transaction Processing

5.0 Introduction
5.1 Objectives
5.2 Introduction to Transaction Processing
5.2.1 Single-User versus Multiuser Systems
5.2.2 Transactions, Database Items, Read and Write Operations, and DBMS Buffers
5.2.3 Why Concurrency Control Is Needed
5.2.4 Why Recovery Is Needed
5.3 Transaction and System Concepts
5.3.1 Transaction States and Additional Operations
5.3.2 The System Log
5.3.3 Commit Point of a Transaction:
5.3.4 DBMS specific buffer Replacement policies
5.4 Desirable Properties of Transactions
5.5 Characterizing Schedules Based on Recoverability
5.6 Characterizing Schedules Based on Serializability
5.6.1 Testing conflict serializability of a Schedule S
5.7 Transaction Support in SQL
5.8 Introduction to Concurrency Control
5.9 Two-Phase Locking Techniques for Concurrency Control
5.9.1 Types of Locks and System Lock Tables
5.9.2 Guaranteeing Serializability by Two-Phase Locking
5.10 Variations of Two-Phase Locking
5.11 Dealing with Deadlock and Starvation
5.11 Deadlock Detection.
5.13 Concurrency Control Based on Timestamp Ordering
5.13.1 Timestamps
5.13.2 The Timestamp Ordering Algorithm
5.14 Multiversion Concurrency Control Techniques
5.14.1 Multiversion Technique Based on Timestamp Ordering
5.14.2 Multiversion Two-Phase Locking Using Certify Locks
5.15 Validation (Optimistic) Concurrency Control Techniques
5.16 Granularity of Data Items and Multiple Granularity Locking
5.16.1 Granularity Level Considerations for Locking
5.16.2 Multiple Granularity Level Locking
5.17 Recovery Concepts

https:/ivtucode.in 1

Database Management System [21CS53]

5.17.1 Recovery Outline and Categorization of Recovery Algorithms
5.17.2 Caching (Buffering) of Disk Blocks
5.17.3 Write-Ahead Logging, Steal/No-Steal, and Force/No-Force
5.17.4 Checkpoints in the System Log and Fuzzy Checkpointing
5.17.5 Transaction Rollback and Cascading Rollback
5.17.6 Transaction Actions That Do Not Affect the Database

5.18 NO-UNDO/REDO Recovery Based on Deferred Update

5.19 Recovery Techniques Based on Immediate Update

5.20 Shadow Paging

5.21 The ARIES Recovery Algorithm

5.22 Database Backup and Recovery from Catastrophic Failures

5.23 Assignment Questions

5.24 Expected Outcome

5.25 Further Reading

https:/ivtucode.in 2

- Database Management System[21C553]

5.0 Introduction

The concept of transaction provides a mechanism for describing logical units of database
processing. Transaction processing systems are systems with large databases and hundreds of
concurrent users executing database transactions. Examples:

 airline reservations

+ banking

» credit card processing,

* online retail purchasing,

» Stock markets, supermarket checkouts, and many other applications
These systems require high availability and fast response time for hundreds of concurrent
users. A transaction is typically implemented by a computer program, which includes database

commands such as retrievals, insertions, deletions, and updates.

5.1 Objectives

+» To study transaction properties

X/

+ To study creation of schedule and maintaining schedule equivalence.

X/

« To check whether the given schedule is serailizable or not.

X/

« To study protocols used for locking objects

+«» Differentiating between 2PL and Strict 2PL

5.2 Introduction to Transaction Processing

5.2.1 Single-User versus Multiuser Systems

= One criterion for classifying a database system is according to the number of users who
can use the system concurrently
Single-User versus Multiuser Systems
= ADBMSis
* single-user
- at most one user at a time can use the system
- Eg: Personal Computer System
. multiuser
- many users can use the system and hence access the database concurrently

- Eg: Airline reservation database

https:/ivtucode.in 3

Database Management System [21CS53]

= Concurrent access is possible because of Multiprogramming. Multiprogramming can
be achieved by:
* interleaved execution
+ Parallel Processing
= Multiprogramming operating systems execute some commands from one process,
then suspend that process and execute some commands from the next process, and so
on
= A process is resumed at the point where it was suspended whenever it gets its turn to
use the CPU again
= Hence, concurrent execution of processes is actually interleaved, as illustrated in

Interleaved process-
ing versus parallel
processing of con-
current transactions.

Time

Figure 21.1
o (Kb i |
B 1 i i i
e 5 | ; |

! (i : CPU,
! 0 | CPU, Figure 21.1
i i
} e
ta I'l-d.

e o
e

= Figure 21.1, shows two processes, A and B, executing concurrently in an interleaved
fashion

= |[nterleaving keeps the CPU busy when a process requires an input or output (I/O)
operation, such as reading a block from disk

= The CPU is switched to execute another process rather than remaining idle during /O
time

= |nterleaving also prevents a long process from delaying other processes.

= |f the computer system has multiple hardware processors (CPUs), parallel processing
of multiple processes is possible, as illustrated by processes C and D in Figure 21.1

= Most of the theory concerning concurrency control in databases is developed in terms of

interleaved concurrency
* In a multiuser DBMS, the stored data items are the primary resources that may be
accessed concurrently by interactive users or application programs, which are constantly

retrieving information from and modifying the database.

https:/ivtucode.in

Database Management System [21CS53]

5.2.2 Transactions, Database Items, Read and Write Operations, and DBMS
Buffers

= A Transaction an executing program that forms a logical unit of database processing
= |t includes one or more DB access operations such as insertion, deletion, modification or
retrieval operation.
= |t can be either embedded within an application program using begin transaction and
end transaction statements Or specified interactively via a high level query language
such as SQL
= Transaction which do not update database are known as read only transactions.
= Transaction which do update database are known as read write transactions.
= A database is basically represented as a collection of named data items The size of a
data item is called its granularity.
= A data item can be a database record, but it can-also be a larger unit such as a whole
disk block, or even a smaller unit such as an individual field (attribute) value of some
record in the database
= Each data item has a unique name
= Basic DB access operations that a transaction can include are:
* read_item(X): Reads a DB item named X into a program variable.
* write_item(X): Writes the value of a program variable into the DB item named X
= Executing read_item(X) include the following steps:
1. Find the address of the disk block that contains item X
2. Copy the block into a buffer in main memory
3. Copy the item X from the buffer to program variable named X.
= Executing write_item(X) include the following steps:
1. Find the address of the disk block that contains item X
2. Copy the disk block into a buffer in main memory
3. Copy item X from program variable named X into its correct location in buffer.
4. Store the updated disk block from buffer back to disk (either immediately or later).
= Decision of when to store a modified disk block is handled by recovery manager of the
DBMS in cooperation with operating system.
= A DB cache includes a number of data buffers.
= When the buffers are all occupied a buffer replacement policy is used to choose one of
the buffers to be replaced. EG: LRU

https:/lvtucode.in 5

Database Management System [21CS53]

= A transaction includes read_item and write_item operations to access and update DB.

(a) T, (b) T, Figure 21.2
: : Two sample transac-

read_item(X); read_item(X); tions. (a) Transaction
X=X-N, X=X+ M T,. (b) Transaction T,
write_item(X); write_item(X); ;
read _item{Y¥);
Y=Y+ N,
write_item(¥};

= The read-set of a transaction is the set of all items that the transaction reads
= The write-set is the set of all items that the transaction writes

= For example, the read-set of T1 in Figure 21.2 is {X, Y}and its write-set is also {X, Y}.

5.2.3 Why Concurrency Control Is Needed

= Several problems can occur when concurrent transactions execute in an uncontrolled
manner
= Example:
* We consider an Airline reservation DB
» Each records is stored for an airline flight which includes Number of reserved seats
among other information.
» Types of problems we may encounter:

1. The Lost Update Problem

2. The Temporary Update (or Dirty Read) Problem
3. The Incorrect Summary Problem

4. The Unrepeatable Read Problem

T? T1
read _item(X); read_item(X);
X=X+ M, X=X-N,;
write_item(X); write_item(X);
read_item(Y);
Y=Y+N;
write_item(Y);

https:/ivtucode.in 6

Database Management System [21CS53]

= Transaction T1
« transfers N reservations from one flight whose number of reserved seats is stored
in the database item named X to another flight whose number of reserved seats is
stored in the database item named Y.
= Transaction T2

+ reserves M seats on the first flight (X)

1. The Lost Update Problem

= occurs when two transactions that access the same DB items have their operations
interleaved in a way that makes the value of some DB item incorrect
= Suppose that transactions T1 and T2 are submitted at approximately the same time, and

suppose that their operations are interleaved as shown in Figure below

Ty s

read item(X):

X=X—N,
read item{X):
X=X+ M

Time write itemiX);

read_item(¥): ;

it m T Item X has an incorrect value because

its update by T, is fost (overwritten).

Y=¥+~N,
Y write_item(Y}

= Final value of item X'is incorrect because T2 reads the value of X before T1 changes it in
the database, and hence the updated value resulting from T1 is lost.
= For example:
X = 80 at the start (there were 80 reservations on the flight)
N =5 (T1 transfers 5 seat reservations from the flight corresponding
to X to the flight corresponding to Y)
M = 4 (T2 reserves 4 seats on X)
The final result should be X = 79.
» The interleaving of operations shown in Figure is X = 84 because the update in T1 that

removed the five seats from X was lost.

https:/Ilvtucode.in 7

Database Management System [21CS53]

2. The Temporary Update (or Dirty Read) Problem

= occurs when one transaction updates a database item and then the transaction fails for
some reason

= Meanwhile the updated item is accessed by another transaction before it is changed back

to its original value

Ty Ty

read item(X);
X=X—N
write item(X);

Time read item{X);
X=X+ M
write item(X);
Transaction T, fails and must change
read _item(¥); the value of X back to its old value;

Y meanwhile T, has read the temporary
incorract value of X

3. The Incorrect Summary Problem

« If one transaction is calculating an aggregate summary function on a number of db items
while other transactions are updating some of these items, the aggregate function may

calculate some values before they are updated and others after they are updated.

Ty LE;

sum = 0;
read_item(A);
sum = sum + A;

read_item{X);
X=X—-N,
write_item(X);
el fioml Tsyreads X after N is subtracted and reads
sum = sum + X; ;
: - " | —— ¥ before N is added; a wrong summary
read_item(¥'); 2
s : is the result (off by N).
sum =sum + Y;
read_item(Y);
Y=Y+mn
write_item(¥);

https:/Ilvtucode.in

Database Management System [21CS53]

4. The Unrepeatable Read Problem

= Transaction T reads the same item twice and gets different values on each read, since
the item was modified by another transaction T" between the two reads.

= for example, if during an airline reservation transaction, a customer inquires about seat
availability on several flights

= When the customer decides on a particular flight, the transaction then reads the number
of seats on that flight a second time before completing the reservation, and it may end
up reading a different value for the item.

5.2.4 Why Recovery Is Needed

= Whenever a transaction is submitted to a DBMS for execution, the system is responsible
for making sure that either
1. All the operations in the transaction are completed successfully and their effect is
recorded permanently in the database or
2.The transaction does not have any effect on the database or any other
transactions
= |In the first case, the transaction is said to be committed, whereas in the second case,
the transaction is aborted
= |f a transaction fails after executing some of its operations but before executing all of

them, the operations already executed must be undone and have no lasting effect.

Types of failures

1. A computer failure (system crash):
* A hardware, software, or network error occurs in the computer system during
transaction execution
« Hardware crashes are usually media failures—for example, main memory failure.
2. Atransaction or system error:
« Some operation in the transaction may cause it to fail, such as integer overflow or
division by zero
» Also occur because of erroneous parameter values
3. Local errors or exception conditions detected by the transaction:
» During transaction execution, certain conditions may occur that necessitate cancellation

of the transaction

https:/Iivtucode.in 9

Database Management System [21CS53]

« For example, data for the transaction may not be found
4. Concurrency control enforcement:
* The concurrency control may decide to abort a transaction because itviolates
serializability or several transactions are in a state of deadlock
5. Disk failure:
+ Some disk blocks may lose their data because of a read or write malfunction or
because of a disk read/write head crash.
6. Physical problems and catastrophes:
» refers to an endless list of problems that includes power or air-conditioning failure, fire,
theft, overwriting disks or tapes by mistake
= Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6.
= Whenever a failure of type 1 through 4 occurs, the system must keep sufficient information to
quickly recover from the failure.
= Disk failure or other catastrophic failures of type 5 or 6 do not happen frequently; if they do

occur, recovery is a major task.

5.3 Transaction and System Concepts

5.3.1 Transaction States and Additional Operations

= A transaction is an atomic unit of work that should either be completed in its entirety or
not done at all. For recovery purposes, the system keeps track of start of a transaction,
termination, commit or aborts.
« BEGIN_TRANSACTION: marks the beginning of transaction execution
« READ or WRITE: specify read or write operations on the database items that are
executed as part of a transaction
« END_TRANSACTION: specifies that READ and WRITE transaction operations have
ended and marks the end of transaction execution
COMMIT_TRANSACTION: signals a successful end of the transaction so that any

changes (updates) executed by the transaction can be safely committed to the

L[]

database and will not be undone

o

ROLLBACK: signals that the transaction has ended unsuccessfully, so that any
changes or effects that the transaction may have applied to the database must be

undone

https:/Ilvtucode.in 10

Database Management System [21CS53]

READ,
WRITE

END

TRANSACTION PARTIALLY COMMIT
COMMITTED

BEGIN
TRANSACTION
JEE———

Figure: State transition diagram illustrating the states for transaction execution

A transaction goes into active state immediately after it starts execution and can

execute read and write operations.

When the transaction ends it moves to partially committed state.

At this end additional checks are done to see if the transaction can be committed or not.
If these checks are successful the transaction is said to have reached commit point and
enters committed state. All the changes are recorded permanently in the db.

A transaction can go to the failed state if one of the checks fails or if the transaction is
aborted during its active state. The transaction may then have to be rolled back to undo
the effect of its write operation.

Terminated state corresponds to the transaction leaving the system. All the information

about the transaction is removed from system tables.

5.3.2 The System Log

Log or Journal keeps track of all transaction operations that affect the values of
database items

This information may be needed to permit recovery from transaction failures.

The log is kept on disk, so it is not affected by any type of failure except for disk or
catastrophic failure

one (or more) main memory buffers hold the last part of the log file, so that log entries
are first added to the main memory buffer

When the log buffer is filled, or when certain other conditions occur, the log buffer is

appended to the end of the log file on disk.

https:/Iivtucode.in 11

Database Management System [21CS53]

» In addition, the log is periodically backed up to archival storage (tape) to guard against
such catastrophic failures
= The following are the types of entries—called log records—that are written to the log file
and the corresponding action for each log record.
» In these entries, T refers to a unique transaction-id that is generated automatically by
the system for each transaction and that is used to identify each transaction:
1. [start_transaction, T]. Indicates that transaction T has started execution.
2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has changed
the value of database item X from old_value to new_value.
3. [read_item, T, X]. Indicates that transaction T has read the value of database item X.
4. [commit, T]. Indicates that transaction T has completed successfully, and affirms that
its effect can be committed (recorded permanently) to the database.

5. [abort, T]. Indicates that transaction T has been aborted.

5.3.3 Commit Point of a Transaction:
= Definition a Commit Point:

— A transaction T reaches its commit point when all its operations that access the
database have been executed successfully and the effect of all the transaction
operations on the database has been recorded in the log.

— Beyond the commit point, the transaction is said to be committed, and its effect is
assumed to be permanently recorded in the database.

— The transaction then writes an entry [commit, T] into the log.

* Roll Back of transactions:
— Needed for transactions that have a [start_transaction,T] entry into the log but no
commit entry [commit,T] into the log.
5.3.4 DBMS specific buffer Replacement policies
Domain Separation(DS) method
* DBMS cache is divided into separate domains, each handles one type of disk pages
and replacements within each domain are handled via basic LRU page replacement.
* LRU is a static algorithm and does not adopts to dynamically changing loads because
the number of available buffers for each domain is predetermined.
* Group LRU adds dynamically load balancing feature since it gives each domain a

priority and selects pages from lower priority level domain first for replacement.

https:/ivtucode.in 12

Database Management System [21CS53]

Hot Set Method:
= This is useful in queries that have to scan a set of pages repeatedly.
= The hot set method determines for each db processing algorithm the set of disk pages
that will be accessed repeatedly and it does not replace them until their processing is
completed.
The DBMIN method:
= uses a model known as QLSM (Query Locality set model), which predetermines the
pattern of page references for each algorithm for a particular db operation
= Depending on the type of access method, the file characteristics, and the algorithm
used the QLSM will estimate the number of main memory buffers needed for each file

involved in the operation.

5.4 Desirable Properties of Transactions

= Transactions should possess several properties, often called the ACID properties
A Atomicity: a transaction is an atomic unit of processing and it is either performed

entirely or not at all.
C Consistency Preservation: a transaction should be consistency preserving that is it
must take the database from one consistent state to another.
| Isolation/Independence: A transaction should appear as though it is being executed
in isolation from other transactions, even though many transactions are executed
concurrently.
D Durability (or Permanency): if a transaction changes the database and is committed,
the changes must never be lost because of any failure.
= The atomicity property requires that we execute a transaction to completion. It is the
responsibility of the transaction recovery subsystem of a DBMS to ensure atomicity.
= The preservation of consistency is generally considered to be the responsibility of the
programmers who write the database programs or of the DBMS module that enforces
integrity constraints.
= The isolation property is enforced by the concurrency control subsystem of the DBMS.
If every transaction does not make its updates (write operations) visible to other
transactions until it is committed, one form of isolation is enforced that solves the
temporary update problem and eliminates cascading rollbacks

= Durability is the responsibility of recovery subsystem.

https:/lvtucode.in 13

Database Management System [21CS53]

5.5 Characterizing Schedules Based on Recoverability

= schedule (or history): the order of execution of operations from all the various
transactions
= Schedules (Histories) of Transactions: A schedule S of n transactions T4, To,....... Th
is a sequential ordering of the operations of the n transactions.
— The transactions are interleaved
= Two operations in a schedule are said to conflict if they satisfy all three of the following
conditions:
(1) they belong to different transactions;
(2) they access the same item X; and
(3) at least one of the operations is a write_item(X)
= Conflicting operations:
* r1(X) conflicts with wy(X) } Read write conflict
* r2(X) conflicts with w1(X)
+ wy(X) conflicts with wa(X) Write conflict
* r1(X) do not conflicts with ra(X)

Schedules classified on recoverability:

= Recoverable schedule:
— One where no transaction needs to be rolled back.
— A schedule S is recoverable if no transaction T in S commits until all transactions
T’ that have written an item that T reads have committed.
— Example:
* Sc. n(X), wi(X); ra(X); r(Y); wa(X); c2; as;
s Sa: n(X); wi(X); r2(X); r(Y); wa(X); wi(Y); ¢1; c2;
= Cascadeless schedule:
— One where every transaction reads only the items that are written by committed
transactions.
= Schedules requiring cascaded rollback:

— A schedule in which uncommitted transactions that read an item from a failed
transaction must be rolled back.
= Strict Schedules:
— A schedule in which a transaction can neither read or write an item X until the

last transaction that wrote X has committed.

https:/Ilvtucode.in 14

Database Management System [21CS53]

5.6 Characterizing Schedules Based on Serializability

= schedules that are always considered to be correct when concurrent transactions are

executing are known as serializable schedules

= Suppose that two users—for example, two airline reservations agents—submit to the

DBMS transactions T1 and T2 at approximately the same time. If no interleaving of

operations is permitted, there are only two possible outcomes:

1. Execute all the operations of transaction T1 (in sequence) followed by all the

operations of transaction T2 (in sequence).

2. Execute all the operations of transaction T2 (in sequence) followed by all the

operations of transaction 71 (in sequence).

Figure 21.5

Examples of serial and nonserial schedules involving transactions Ty and Tn. (a)
Senal schedule A: T, followed by T,. (b) Serial schedule B: 7, Tollowed by. 7.
(c) Two nonserial schedules C and D with interleaving of operations.

(a)

Time

(c)

Time

Ty

T

read_item({X);
X=X—-N;
write item{X);
read_item{Y);
F=¥Y+N;
write_item{ ¥);

read _item(X);
X=X+ M
write_item(X);

Schedule A

T

T

read item(X);
X=X-MN;

write_itemi(X);
read_item(¥);

Y=Y+ N
write_itemn(Y):

read_item{X);
X=X+M

write_iterm(X);

Schedule C

(b)

Time

Time

T, T

read_itemi{X);
X=X+ M
write_item(X);

read_item(X);

X=X—-N;

write_item(X};

read item{¥');

Y=V¥Y+N,

write_item(Y};

Schedule B

T

read_itemi{X);
X=X-N;
write_item(X);

read_item(¥);
Y=rY+N
write_item(Y);

read_itemi(X);
X=X+ M,
write_itemi{X);

Schedule D

https:/Ilvtucode.in

15

Database Management System [21CS53]

= Serial schedule:
— A schedule S is serial if, for every transaction T participating in the schedule, all
the operations of T are executed consecutively in the schedule.
+ Otherwise, the schedule is called nonserial schedule.
= Serializable schedule:
— A schedule S is serializable if it is equivalent to some serial schedule of the same
n transactions.
= Result equivalent:
— Two schedules are called result equivalent if they produce the same final state of
the database.
= Conflict equivalent:
— Two schedules are said to be conflict equivalent if the order of any two conflicting
operations is the same in both schedules.
= Conflict serializable:
— A schedule S is said to be conflict serializable if it is conflict equivalent to some
serial schedule S’.

= Being serializable is not the same as being serial
= Being serializable implies that the schedule is a correct schedule.
— It will leave the database in a consistent state.
— The interleaving is appropriate and will result in a state as if the transactions
were serially executed, yet will achieve efficiency due to concurrent execution.

5.6.1 Testing conflict serializability of a Schedule S

For each transaction Ti participating in schedule S,create a node labeled Ti in the
precedence graph.

For each case in S where Tj executes a read_item(X) after Ti executes a write_item(X),
create an edge (Ti->Tj) in the precedence graph.

For each case in S where Tj executes a write_item(X) after Ti executes a read_item (X)
,create an edge (Ti—=>Tj) in the precedence graph.

For each case in S where Tj executes a write_item(X) after Ti executes a write_item(X),
create an edge (Ti—>Tj) in the precedence graph.

The schedule S is serializable if and only if the precedence graph has no cycles.

https:/lvtucode.in 16

Database Management System [21CS53]

O (%)
e
(© X

Fig: Constructing the precedence graphs for schedules A and D from fig 21.5 to test for conflict

serializability.

(a) Precedence graph for serial schedule A.

(b) Precedence graph for serial schedule B.

(c) Precedence graph for schedule C (not serializable).

(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

= Another example of serializability testing. (a) The READ and WRITE operations of three
transactions T4, T2, and Ts.

transaction T,

transaction 7,

transaction T,

read_item (X);
write_item (X);
read_item (Y);
write_item (Y);

read_item (Z);
read_item (Y);
write_item (Y);
read_item (X);
write_item (X);

read_item (Y);
read_item (Z);

write_item (Y);

write_item (Z);

https:/ivtucode.in

17

Time

©

Time

transaction T,

transaction 7,

transaction 75

read_item (X);
write_item (X);

read_item (Y);

read_item (Z);
read_item (Y);
write_item (Y);

read_item (X);

read_item (Y);
read_item (Z2);

write_item (Y);
write_item (Z2);

write_item (Y); write_item (X);
Schedule E
transaction T, transaction 75 transaction 73
read_item (Y);
read_item (Z);
read_item (X);
write_item (X); write_item (Y);
write_item (Z);
read_item (Z);
read_item (Y);
write_item (Y); read_item (Y);
write_item (Y);
read_item (X);
write_item (X);
Schedule F

Database Management System [21CS53]

https:/ivtucode.in

18

Database Management System [21CS53]

= Precedence graph for schedule E

Equivalent serial schedules

None

Reason

cycle X(7, =T\ YT, 1)
cycle X(Ty =+ T,), YZ(T, = T), V(T3 7))

= Precedence graph for schedule F

Equivalent serial schedules

i — T, —» 7T,

5.7 Transaction Support in SQL

= The basic definition of an SQL transaction is, it is a logical unit of work and is guaranteed

to be atomic

A single SQL statement is always considered to be atomic—either it completes

execution without an error or it fails and leaves the database unchanged

= With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is
done implicitly when particular SQL statements are encountered

= Every transaction must have an explicit end statement, which is either a COMMIT or a
ROLLBACK

= Every transaction has certain characteristics attributed to it and are specified by a SET

TRANSACTION statement in SQL

https:/Iivtucode.in 19

Database Management System [21CS53]

= The characteristics are :
* The access mode
- can be specified as READ ONLY or READ WRITE
- The default is READ WRITE
- A mode of READ WRITE allows select, update, insert, delete, and create
commands to be executed
- A mode of READ ONLY, as the name implies, is simply for data retrieval.
+ The diagnostic area size
- DIAGNOSTIC SIZE n, specifies an integer value n, which indicates the
number of conditions that can be held simultaneously in the
diagnostic area
- These conditions supply feedback information (errors or exceptions) to the
user or program on the n most recently executed SQL statement

* The isolation level
- specified using the statement ISOLATION LEVEL <isolation>, where the value for

<isolation> can be READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ, or SERIALIZABLE
- The default isolation level is SERIALIZABLE
- The use of the term SERIALIZABLE here is based on not allowing violations that
cause dirty read, unrepeatable read, and phantoms
- If a transaction executes at a lower isolation level than SERIALIZABLE, then one
or more of the following three violations may occur:

1. Dirty read. A transaction 71 may read the update of a transaction T2, which
has not yet committed. If T2 fails and is aborted, then T1 would have read a
value that does not exist and is incorrect.

2. Nonrepeatable read. A transaction 71 may read a given value from a table. If
another transaction T2 later updates that value and T1 reads that value again,
T1 will see a different value.

3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps
based on some condition specified in the SQL WHERE-clause. Now suppose
that a transaction T2 inserts a new row that also satisfies the WHERE-clause
condition used in T1, into the table used by T1. If T1 is repeated, then T1 will

see a phantom, a row that previously did not exist.

https:/ivtucode.in 20

Database Management System [21CS53]

Table 21.1 Possible Violations Based on |solation Levels as Defined in SOL

Type of Violation

Isolation Level Dirty Read Nonrepeatable Read Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

EXEC 50QL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION
READ WRITE
DIAGNOSTIC SIZE 5
ISOLATION LEVEL SERIALIZABLE;
EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, SsSn, Dno, Salary)
VALUES ('Robert', 'smith', '991004321', 2, 35000);
EXEC S5QL UPDATE EMPLOYEE
SET Salary = Salary * 1.1 WHERE Dno = 27
EXEC SQL COMMIT;
GOTC THE END;
UNDO: EXEC 50QL ROLLBACK;
THE END: ... ;

= The transaction consists of first inserting a new row in the EMPLOYEE table and then
updating the salary of all employees who work in department 2

= [f an error occurs on any of the SQL statements, the entire transaction is rolled back

= This implies that any updated salary (by this transaction) would be restored to its

previous value and that the newly inserted row would be removed.

https:/Ilvtucode.in 21

Database Management System [21CS53]

Chapter 2: Concurrency Control in Databases

5.8 Introduction to Concurrency Control

» Purpose of Concurrency Control

— To enforce Isolation (through mutual exclusion) among conflicting transactions.
— To preserve database consistency through consistency preserving execution of
transactions.

— To resolve read-write and write-write conflicts.

+ Example:
— In concurrent execution environment if T1 conflicts with T2 over a data item A, then
the existing concurrency control decides if T1 or T2 should get the A and if the other

transaction is rolled-back or waits.
5.9 Two-Phase Locking Techniques for Concurrency Control

= The concept of locking data items is one of the main techniques used for controlling the
concurrent execution of transactions.

= A lock is a variable associated with a data item in the database. Generally there is a lock
for each data item in the database.

= A lock describes the status of the data item with respect to possible operations that can be
applied to that item.

= |tis used for synchronizing the access by concurrent transactions to the database items.

= A transaction locks an object before using it

= When an object is locked by another transaction, the requesting transaction must wait

5.9.1 Types of Locks and System Lock Tables

1. Binary Locks

= A binary lock can have two states or values: locked and unlocked (or 1
and 0).

= |f the value of the lock on X is 1, item X cannot be accessed by a database
operation that requests the item

https:/Ilvtucode.in 22

Database Management System [21CS53]

If the value of the lock on X is 0, the item can be accessed when

requested, and the lock value is changed to 1

= We refer to the current value (or state) of the lock associated with item X
as lock(X).

» Two operations, lock_item and unlock_item, are used with binary
locking.

» A transaction requests access to an item X by first issuing a lock_item(X)
operation

» |f LOCK(X) = 1, the transaction is forced to wait.

» |f LOCK(X) =0, itis set to 1 (the transaction locks the item) and the
transaction is allowed to access item X

» When the transaction is through using the item, it issues an
unlock_item(X) operation, which sets LOCK(X) back to 0 (unlocks the
item) so that X may be accessed by other transactions

» Hence, a binary lock enforces mutual exclusion on the data item.

lock_item(X):
B: if LOCK(X) = 0 (* item is unlocked *)
then LOCK(X) <1 (* lock the item *)

else

begin
wait (until LOCK(X) =0
and the lock manager wakes up the transaction);
goto B

end;

unlock_item(X):
LOCK(X) < 0; (* unlock the item *)
if any transactions are waiting

then wakeup one of the waiting transactions;

Fig: 2.1.1 Lock and unlock operations for binary licks.

https:/ivtucode.in 23

Database Management System [21CS53]

The lock_item and unlock_item operations must be implemented as indivisible units that
is, no interleaving should be allowed once a lock or unlock operation is started until the
operation terminates or the transaction waits
The wait command within the lock_item(X) operation is usually implemented by putting
the transaction in a waiting queue for item X until X is unlocked and the transaction can
be granted access to it
Other transactions that also want to access X are placed in the same queue.Hence, the
wait command is considered to be outside the lock_item operation.
It is quite simple to implement a binary lock; all that is needed is a binary-valued
variable, LOCK, associated with each data item X in the database
In its simplest form, each lock can be a record with three fields: <Data_item name,
LOCK, Locking_transaction> plus a queue for transactions that are waiting to access the
item
If the simple binary locking scheme described here is used, every transaction must obey
the following rules:
1. A transaction T must issue the operation lock item(X) before any
read_item(X) or write_item(X) operations are performed in T.
2. A transaction T must issue the operation unlock item(X) after all
read_item(X) and write_item(X) operations are completed in T.
3. A transaction T will not issue a lock _item(X) operation if it already holds the lock
on item X.
4. A transaction T will not issue an unlock_item(X) operation unless it already holds

the lock on item X.

Shared/Exclusive (or Read/Write) Locks

binary locking scheme is too restrictive for database items because at most, one
transaction can hold a lock on a given item

should allow several transactions to access the same item X if they all access X for
reading purposes only

if a transaction is to write an item X, it must have exclusive access to X

For this purpose, a different type of lock called a multiple-mode lock is used

In this scheme—called shared/exclusive or read/write locks—there are three locking

operations: read_lock(X), write_lock(X), and unlock(X).

https:/Ilvtucode.in 24

Database Management System [21CS53]

= A read-locked item is also called share-locked because other transactions are allowed
to read the item, whereas a write-locked item is called exclusive-locked because a
single transaction exclusively holds the lock on the item
= Method to implement read/write lock is to
- keep track of the number of transactions that hold a shared (read) lock
on an item in the lock table
- Each record in the lock table will have four fields:

<Data_item_name, LOCK, No_of reads, Locking_transaction(s)>.

If LOCK(X)=write-locked, the value of locking_transaction(s) is a single transaction that
holds the exclusive (write) lock on X

If LOCK(X)=read-locked, the value of locking transaction(s) is a list of one or more
transactions that hold the shared (read) lock on X.

read lock(X):
B: if LOCK(X) = “unlocked”
thenbegin LOCK(X) ¢ “read-locked”;
no_of _reads(X) + 1
end
glse if LOCK(X) = “read-locked”
then no_of reads(X) ¢« no of reads(X) + 1
else begin
wait {until LOCK(X) = "unlocked"
and the lock manager wakes up the transaction);
gotoB
end;
write lock(X):
B: if LOCK(X) = “"unlocked"
then LOCK(X) « “write-locked”
else begin
wait {until LOCK(X) = "unlocked"
and the lock manager wakes up the transaction);
gotoB
end;

https:/Ivtucode.in 25

Database Management System [21CS53]

unlock (X):
if LOCK(X) = “write-locked”
then begin LOCK(X) ¢ “unlocked";
wakeup one of the waiting transactions, if any
end
else it LOCK(X) = “read-locked"
thenbegin

no_of reads(X) «no_of reads(X) —1;
if no_of reads(X) =0
then begin LOCK(X) = “unlocked";

wakeup one of the waiting transactions, if any
end
end;

= When we use the shared/exclusive locking scheme, the system must enforce the following
rules:

1. A transaction T must issue the operation read lock(X) or write lock(X) before any
read_item(X) operation is performed in T.

2. Atransaction T must issue the operation write_lock(X) before any write_item(X)
operation is performed in T.

3 A transaction T must issue the operation unlock(X) after all read_item(X) and
write_item(X) operations-are completed in T.3

4. A transaction T will not issue a read_lock(X) operation if it already holds a read (shared)
lock or a write (exclusive) lock on item X.

Conversion of Locks

= A transaction that already holds a lock on item X is allowed under certain conditions to
convert the lock from one locked state to another

= For example, it is possible for a transaction T to issue a read_lock(X) and then later to
upgrade the lock by issuing a write_lock(X) operation
- If Tis the only transaction holding a read lock on X at the time it issues

the write_lock(X) operation, the lock can be upgraded;otherwise, the
transaction must wait

5.9.2 Guaranteeing Serializability by Two-Phase Locking

https:/Ivtucode.in 26

Database Management System [21CS53]

= A transaction is said to follow the two-phase locking protocol if all locking operations

(read_lock, write_lock) precede the first unlock operation in the transaction

= Such a transaction can be divided into two phases:

= Expanding or growing (first) phase, during which new locks on items can be

acquired but none can be released

= Shrinking (second) phase, during which existing locks can be released but no

new locks can be acquired

= If lock conversion is allowed, then upgrading of locks (from read-locked to write-locked)

must be done during the expanding phase, and downgrading of locks (from write-locked

to read-locked) must be done in the shrinking phase.
= Transactions T1 and T2 in Figure 22.3(a) do not follow the two-phase locking protocol

because the write _lock(X) operation follows the unlock(Y) operation in T1, and similarly

the write_lock(Y) operation follows the unlock(X) operation in T2.

(a)

(c)

Time

Ty T,

read lock(Y); read lock(X);

read_item(Y); read _item{X);

unlocki¥); unlock(X);

write_lock(X); write_lock{Y);

read_item(X); read_item(Y);

X=X+Y Y=X+¥Y

write_item(X); write_item{¥);

unlockiX); unfock({¥);

T T,

read_lock{¥);

read jtem(Y);

unlock(¥);
read_lock{X);
read_itern(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y¥=X+1
write_item(Y);
unlock(¥);

write_lock(X);

read_item(X);

X=X+7Y

write_item{X);

unlock{X);

{b) Initial values: X=20, ¥=30

Result senal schedule T,
followed by T,: X=50, Y=80

Result of senal schedule T,
followed by T,: X=70, Y=50

Figure 21.3 Transactions that do not
obey two-phase locking (a) Two
transactions T1 and T2 (b) Results of
possible serial schedules of 71 and T2
(c) A nonserializable schedule S that
uses locks

https:/ivtucode.in

27

Database Management System [21CS53]

= |f we enforce two-phase locking, the transactions can be rewritten as 71’ and T2’ as shown

in Figure 22.4.

= Now, the schedule shown in Figure 22.3(c) is not permitted for T1_ and T2_ (with their

modified order of locking and unlocking operations) under the rules of locking because T1_

will issue its write_lock(X) before it unlocks item Y; consequently, when T2_ issues its

read_lock(X), it is forced to wait until T1_ releases the lock by issuing an unlock (X) in the

schedule.

Figure 22.4

Transactions T, and T,', which/are the
same as Ty and T in Figura 293, but
follow the two-phase locking protocol
Mote that they can produce a deadlock.

T,

read_lock{¥);
read_item(Y');
write_lock(X);
unlock({¥)
read itermn(X);
Xt Y;
write item(X);
unlock(X);

T,

read_lock({X);
read_itemi{X);
write_lock(¥);
unlock{X)
read item{Y);
Y=X+%¥
write_item(¥);
unlock({Y):

= |f every transaction in a schedule follows the two-phase locking protocol, schedule

guaranteed to be serializable

= Two-phase locking may limit the amount of concurrency that can occur in a schedule

= Some serializable schedules will be prohibited by two-phase locking protocol

5.10 Variations of Two-Phase Locking

= Basic 2PL

— Technique described previously

= Conservative (static) 2PL

— Requires a transaction to lock all the items it accesses before the transaction

begins execution by predeclaring read-set and write-set

— lts Deadlock-free protocol

https:/ivtucode.in

28

Database Management System [21CS53]

= Strict 2PL
— guarantees strict schedules
— Transaction does not release exclusive locks until after it commits or aborts
— no other transaction can read or write an item that is written by T unless T has
committed, leading to a strict schedule for recoverability
— Strict 2PL is not deadlock-free

= Rigorous 2PL
— guarantees strict schedules
— Transaction does not release any locks until after it commits or aborts

— easier to implement than strict 2PL

5.11 Dealing with Deadlock and Starvation

= Deadlock occurs when each transaction T in a set of two or more transactions is
waiting for some item that is locked by some other transaction T’ in the set.

= Hence, each transaction in the set is in a waiting queue, waiting for one of the other
transactions in the set to release the lock on an item.

= But because the other transaction is also waiting, it will never release the lock.

= A simple example is shown in Figure 22.5(a), where the two transactions 71’ and
T2_'are deadlocked in a partial schedule; T1' is in the waiting queue for X, which is
locked by T2’; while T2’ is in the waiting queue for Y, which is locked by T1’. Meanwhile,

neither 71’ nor T2’ nor any other transaction can access items Xand Y

(a) e & (b) | X +
read_lock(Y); - Y
read_item(Y); 'QTD (Tz

i read_lock(X); =
Time read_item(X); + ¥ |
write_lock(X);
Y write_lock(});

Figure 22.5 lllustrating the deadlock problem (a) A partial schedule of T1' and T2' thatis in a
state of deadlock (b) A wait-for graph for the partial schedule in (a)

https:/Ilvtucode.in 29

Database Management System [21CS53]

Deadlock prevention protocols

One way to prevent deadlock is to use a deadlock prevention protocol

One deadlock prevention protocol, which is used in conservative two-phase locking,
requires that every transaction lock all the items it needs in advance. If any of the items
cannot be obtained, none of the items are locked. Rather, the transaction waits and then
tries again to lock all the items it needs.

A second protocol, which also limits concurrency, involves ordering all the items in the
database and making sure that a transaction that needs several items will lock them
according to that order. This requires that the programmer (or the system) is aware of
the chosen order of the items

Both approaches impractical

Some of these techniques use the concept of transaction timestamp TS(T), which is a
unique identifier assigned to each transaction

The timestamps are typically based on the order in which transactions are started; hence, if
transaction T1 starts before transaction T2, then TS(T1) < TS(T2).

The older transaction (which starts first) has the smaller timestamp value.

Protocols based on a timestamp
+ Wait-die
* Wound-wait

Suppose that transaction Tj tries to lock an item X but is not able to because X is locked
by some other transaction Tj with a conflicting lock. The rules followed by these
schemes are:

m Wait-die. If TS(Ti) < TS(T)), then (Ti older than Tj) Ti is allowed to wait; otherwise (Ti
younger than Tj) abort Ti (Ti dies) and restart it later with the same timestamp.

m Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds Tj) and
restart it later with the same timestamp, otherwise (Ti younger than Tj) Ti is allowed to
wait.

In wait-die, an older transaction is allowed to wait for a younger transaction, whereas a
younger transaction requesting an item held by an older transaction is aborted and
restarted.

The wound-wait approach does the opposite: A younger transaction is allowed to wait
for an older one, whereas an older transaction requesting an item held by a younger

transaction preempts the younger transaction by aborting it.

https:/lvtucode.in 30

Database Management System [21CS53]

Both schemes end up aborting the younger of the two transactions (the transaction that
started later) that may be involved in a deadlock, assuming that this will waste less
processing.
It can be shown that these two techniques are deadlock-free, since in wait-die,
transactions only wait for younger transactions so no cycle is created.
Similarly, in wound-wait, transactions only wait for older transactions so no cycle is
created.
Another group of protocols that prevent deadlock do not require timestamps. These
include the

* no waiting (NW) and

» cautious waiting (CW) algorithms
= No waiting algorithm,

—if a transaction is unable to obtain a lock, it is immediately aborted and then
restarted after a certain time delay without checking whether a deadlock will
actually occur or not.

— no transaction ever waits, so no deadlock will occur

— this scheme can cause transactions to abort and restart needlessly

= cautious waiting
— try to reduce the number of needless aborts/restarts
— Suppose that transaction Ti tries to lock an item X but is not able to do so because
X is locked by some other transaction Tj with a conflicting lock.
— The cautious waiting rules are as follows:
= |f Tj is not blocked (not waiting for some other locked item), then Ti is
blocked and allowed to wait; otherwise abort Ti.
— It can be shown that cautious waiting is deadlock-free, because no transaction will

ever wait for another blocked transaction.

5.12 Deadlock Detection.

A second, more practical approach to dealing with deadlock is deadlock detection,
where the system checks if a state of deadlock actually exists.

This solution is attractive if we know there will be little interfference among the
transactions—that is, if different transactions will rarely access the same items at the

same time.

https:/Ilvtucode.in 31

Database Management System [21CS53]

This can happen if the transactions are short and each transaction locks only a few

items, or if the transaction load is light.

= On the other hand, if transactions are long and each transaction uses many items, or if
the transaction load is quite heavy, it may be advantageous to use a deadlock
prevention scheme.

= A simple way to detect a state of deadlock is for the system to construct and maintain a
wait-for graph.

= One node is created in the wait-for graph for each transaction that is currently executing.

= Whenever a transaction Ti is waiting to lock an item X that is currently locked by a
transaction Tj, a directed edge (Ti — Tj) is created in the wait-for graph.

= When Tj releases the lock(s) on the items that Ti was waiting for, the directed edge is
dropped from the wait-for graph.We have a state of deadlock if and only if the wait-for
graph has a cycle.

= One problem with this approach is the matter of determining when the system should
check for a deadlock.

= One possibility is to check for a cycle every time an edge is added to the wait-for graph,
but this may cause excessive overhead.

= Criteria such as the number of currently executing transactions or the period of time
several transactions have been waiting to lock items may be used instead to check for a
cycle. Figure 22.5(b) shows the wait-for graph for the (partial) schedule shown in Figure
22.5(a).

— If the system is in a state of deadlock, some of the transactions causing the deadlock
must be aborted.

— Choosing which transactions to abort is known as victim selection.

— The algorithm for victim selection should generally avoid selecting transactions that have

been running for a long time and that have performed many updates, and it should try

instead to select transactions that have not made many changes (younger transactions).

Timeouts
¢ Another simple scheme to deal with deadlock is the use of timeouts.
* This method is practical because of its low overhead and simplicity.
* In this method, if a transaction waits for a period longer than a system-defined
timeout period, the system assumes that the transaction may be deadlocked and

aborts it—regardless of whether a deadlock actually exists or not.

https:/ivtucode.in 32

Database Management System [21CS53]

Starvation.
Another problem that may occur when we use locking is starvation, which occurs
when a transaction cannot proceed for an indefinite period of time while other
transactions in the system continue normally.
This may occur if the waiting scheme for locked items is unfair, giving priority to
some transactions over others
One solution for starvation is to have a fair waiting scheme, such as using a first-
come-first-served queue; transactions are enabled to lock an item in the order in
which they originally requested the lock.
Another scheme allows some transactions to have priority over others but
increases the priority of a transaction the longer it waits, until it eventually gets the
highest priority and proceeds.
Starvation can also occur because of victim selection if the algorithm selects the
same transaction as victim repeatedly, thus causing it to abort and never finish
execution.
The algorithm can use higher priorities for transactions that have been aborted

multiple times to avoid this problem.

5.13 Concurrency Control Based on Timestamp Ordering

guarantees serializability using transaction timestamps to order transaction execution

for an equivalent serial schedule

5.13.1 Timestamps

timestamp is a unique identifier created by the DBMS to identify a transaction.
Typically, timestamp values are assigned in the order in which the transactions are
submitted to the system, so a timestamp can be thought of as the fransaction start
time.
We will refer to the timestamp of transaction T as TS(T).
Concurrency control techniques based on timestamp ordering do not use
locks;hence, deadlocks cannot occur.
Timestamps can be generated in several ways.

— One possibility is to use a counter that is incremented each time its value is

assigned to a transaction. The transaction timestamps are numbered 1, 2, 3,

https:/Iivtucode.in 33

Database Management System [21CS53]

.. in this scheme. A computer counter has a finite maximum value, so the
system must periodically reset the counter to zero when no transactions are
executing for some short period of time.

— Another way to implement timestamps is to use the current date/time value of
the system clock and ensure that no two timestamp values are generated
during the same tick of the clock.

5.13.2 The Timestamp Ordering Algorithm

= The idea for this scheme is to order the transactions based on their
timestamps.

= A schedule in which the transactions participate is then serializable, and the
only equivalent serial schedule permitted has the transactions in order of their
timestamp values. This is called timestamp ordering (TO).

= The algorithm must ensure that, for each item accessed by -conflicting
Operations in the schedule, the order in which the item is accessed does not
violate the timestamp order.

= To do this, the algorithm associates with each database item X two timestamp
(TS) values:

1. read_TS(X). The read timestamp of item X is the largest timestamp
among all the timestamps of transactions that have successfully
read item X—that is, read_TS(X) = TS(T), where T is the youngest
transaction that has read X successfully.

2. write_TS(X). The write timestamp of item X is the largest of all the

timestamps of transactions that have successfully written item X—
that is, write_ TS(X) = TS(T), where T is the youngest transaction that
has written X successfully.
Basic Timestamp Ordering (TO).
= Whenever some transaction T tries to issue a read_item(X) or a write_item(X) operation,
the basic TO algorithm compares the timestamp of T with read_TS(X) and write_ TS(X) to
ensure that the timestamp order of transaction execution is not violated.
= If this order is violated, then transaction T is aborted and resubmitted to the system as a
new transaction with a new timestamp.
= |f Tis aborted and rolled back, any transaction T1 that may have used a value written by T

must also be rolled back.

https:/Ilvtucode.in 34

Database Management System [21CS53]

= Similarly, any transaction T2 that may have used a value written by T1 must also be rolled
back, and so on. This effect is known as cascading rollback and is one of the problems
associated with basic TO, since the schedules produced are not guaranteed to be
recoverable.
= An additional protocol must be enforced to ensure that the schedules are recoverable,
cascadeless, or strict.
» The basic TO algorithm :
= The concurrency control algorithm must check whether conflicting operations violate
the timestamp ordering in the following two cases:
1. Whenever a transaction T issues a write_item(X) operation, the following is
checked:

a. If read_TS(X) > TS(T) or if write_ TS(X) > TS(T), then abort and roll back T and
reject the operation. This should be done because some younger transaction
with a timestamp greater than TS(T)—and hence after T in the timestamp
ordering—has already read or written the value of item X before T had a chance
to write X, thus violating the timestamp ordering.

b.If the condition in part (@) does not occur, then execute the write_item(X)
operation of T and set write_ TS(X) to TS(T).

2. Whenever a transaction T issues a read_item(X) operation, the following is checked:
a. If write_ TS(X) > TS(T), then abort and roll back T and reject the operation. This
should be done because some younger transaction with timestamp greater than
TS(T)—and hence after T in the timestamp ordering—has already written the
value of item X before T had a chance to read X.
b. If write. TS(X) = TS(T), then execute the read_item(X) operation of T and set
read TS(X) to the larger of TS(T) and the current read_TS(X).
= Whenever the basic TO algorithm detects two conflicting operations that occur in
the incorrect order, it rejects the later of the two operations by aborting the
transaction that issued it. The schedules produced by basic TO are hence
guaranteed to be confilict serializable
Strict Timestamp Ordering (TO)
= A variation of basic TO called strict TO ensures that the schedules are both strict

(for easy recoverability) and (conflict) serializable.

https:/ivtucode.in 35

Database Management System [21CS53]

= In this variation, a transaction T that issues a read_item(X) or write_item(X) such

that TS(T) > write_TS(X) has its read or write operation delayed until the transaction

T that wrote the value of X (hence TS(T’) = write_TS(X)) has committed or aborted.

= To implement this algorithm, it is necessary to simulate the locking of an item X that
has been written by transaction T until T is either committed or aborted. This

algorithm does not cause deadlock, since T waits for T only if TS(T) > TS(T_).

Thomas’s Write Rule
= A modification of the basic TO algorithm, known as Thomas’s write rule, does not

enforce conflict serializability, but it rejects fewer write operations by modifying the

checks for the write_item(X) operation as follows:

1. Ifread_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue
processing. This is because some transaction with timestamp greater than TS(7)—
and hence after T in the timestamp ordering—has already written the value of X.
Thus, we must ignore the write_item(X) operation of T because it is already outdated
and obsolete. Notice that any conflict arising from this situation would be detected by
case (1).

If neither the condition in part (1) nor the condition in part (2) occurs, then execute
the write_item(X) operation of T and set write_ TS(X) to TS(T).

5.14 Multiversion Concurrency Control Techniques

= QOther protocols for concurrency control keep the old values of a data item when the
item is updated. These are known as multiversion concurrency control, because
several versions (values) of an item are maintained

= When a transaction requires access to an item, an appropriate version is chosen to
maintain the serializability of the currently executing schedule, if possible.

= The idea is that some read operations that would be rejected in other techniques can
still be accepted by reading an older version of the item to maintain serializability.\WWhen
a transaction writes an item, it writes a new version and the old version(s) of the item
are retained

= An obvious drawback of multiversion techniques is that more storage is needed to maintain

multiple versions of the database items

https:/Ilvtucode.in 36

Database Management System [21CS53]

5.14.1 Multiversion Technique Based on Timestamp Ordering

In this method, several versions X1, X2, ..., Xk of each data item X are maintained.

For each version, the value of version Xi and the following two timestamps are kept:

1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps of
transactions that have successfully read version Xi.

2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transaction

that wrote the value of version Xi.

Whenever a transaction T is allowed to execute a write_item(X) operation, a new
version Xk+1 of item X is created, with both the write_ TS(Xk+1) and the
read_TS(Xk+1) set to TS(T)
Correspondingly, when a transaction T is allowed to read the value of version Xi, the
value of read_TS(Xij) is set to the larger of the current read_TS(X/) and TS(T).
To ensure serializability, the following rules are used:

1. If transaction T issues a write_item(X) operation, and version i of X has the
highest write_ TS(XJ) of all versions of X that is also less than or equal to TS(T),
and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise,
create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has
the highest write_ TS(Xi) of all versions of X that is also less than or equal to
TS(T); then return the value of Xi to transaction T, and set the value of read_TS(
Xi) to the larger of TS(T) and the current read_TS(Xi).

5.14.2 Multiversion Two-Phase Locking Using Certify Locks

In this multiple-mode locking scheme, there are three locking modes for an item:

read, write, and certify

Hence, the state of LOCK(X) for an item X can be one of read-locked, writelocked,

certify-locked, or unlocked

We can describe the relationship between read and write locks in the standard
scheme by means of the lock compatibility table shown in Figure 22.6(a)
An entry of Yes means that if a transaction T holds the type of lock specified in the

column header on item X and if transaction T_ requests the type of lock specified in

https:/Ilvtucode.in 37

Database Management System [21CS53]

the row header on the same item X, then T_ can obtain the lock because the locking

modes are compatible

(a)
Read
Write

(b)
Read
White
Certify

Read Write
Yes No
No No

Read Wirite Certify
Yes Yes No
Yes No No
No No No

Figure 22.6: Lock compatibility tables. (a) A compatibility table for read/write locking scheme.
(b) A compatibility table for read/write/certify locking scheme.

= On the other hand, an entry of No in the table indicates that the locks are not compatible,

so T" must wait until T releases the lock

= The idea behind multiversion 2PL is to allow other transactions T to read an item X

while a single transaction T holds a write lock on X

= This is accomplished by allowing two versions for each item X; one version must always

have been written by some committed transaction

The second version X is created when a transaction T acquires a write lock on the item

5.15Validation (Optimistic) Concurrency Control Techniques

* In optimistic concurrency control techniques, also known as validation or

certification techniques, no checking is done while the transaction is executing

= |n this scheme, updates in the transaction are not applied directly to the database items

until the transaction reaches its end

https:/Ilvtucode.in

38

Database Management System [21CS53]

= During transaction execution, all updates are applied to local copies of the data items
that are kept for the transaction

= At the end of transaction execution, a validation phase checks whether any of the
transaction’s updates violate serializability.

= There are three phases for this concurrency control protocol:

1. Read phase. A transaction can read values of committed data items from the
database. However, updates are applied only to local copies (versions) of the data
items kept in the transaction workspace.

2. Validation phase. Checking is performed to ensure that serializability will not be
violated if the transaction updates are applied to the database.

3. Write phase. If the validation phase is successful, the transaction updates are
applied to the database; otherwise, the updates are discarded and the transaction is
restarted.

= The idea behind optimistic concurrency control is to do all the checks at once; hence,

transaction execution proceeds with a minimum of overhead until the validation phase is

reached
= The techniques are called optimistic because they assume that little interference will
occur and hence that there is no need to do checking during transaction execution.
= The validation phase for Ti checks that, for each such transaction Tj that is either
committed or is in its validation phase, one of the following conditions holds:
1. Transaction Tj completes its write phase before Ti starts its read phase.
2. Tistarts its write phase after Tj completes its write phase, and the read_set
of Ti has no items in common with the write_set of Tj.
3. Both the read set and write_set of Ti have no items in common with the
write_set of Tj, and Tj completes its read phase before Ti completes its read

phase.
5.16 Granularity of Data Items and Multiple Granularity Locking

= All concurrency control techniques assume that the database is formed of a number
of named data items. A database item could be chosen to be one of the following:
m A database record
m A field value of a database record
m A disk block

m A whole file

https:/ivtucode.in 39

Database Management System [21CS53]

m The whole database

The granularity can affect the performance of concurrency control and recovery

5.16.1 Granularity Level Considerations for Locking

The size of data items is often called the data item granularity.

Fine granularity refers to small item sizes, whereas coarse granularity refers to large
item sizes

The larger the data item size is, the lower the degree of concurrency permitted.

For example, if the data item size is a disk block, a transaction T that needs to lock a
record B must lock the whole disk block X that contains B because a lock is associated
with the whole data item (block). Now, if another transaction S wants to lock a different
record C that happens to reside in the same block X in a conflicting lock mode, it is
forced to wait. If the data item size was a single record, transaction S would be able to
proceed, because it would be locking a different data item (record).

The smaller the data item size is, the more the number of items in the database.
Because every item is associated with a lock, the system will have a larger number of
active locks to be handled by the lock manager. More lock and unlock operations will be
performed, causing a higher overhead

The best item size depends on the types of transactions involved.

If a typical transaction accesses a small number of records, it is advantageous to have
the data item granularity be one record

On the other hand, if a transaction typically accesses many records in the same file, it
may be better to have block or file granularity so that the transaction will consider all

those records as one (or a few) data items

5.16.2 Multiple Granularity Level Locking

Since the best granularity size depends on the given transaction, it seems appropriate
that a database system should support multiple levels of granularity, where the
granularity level can be different for various mixes of transactions

Figure 22.7 shows a simple granularity hierarchy with a database containing two files,
each file containing several disk pages, and each page containing several records.

This can be used to illustrate a multiple granularity level 2PL protocol, where a lock

can be requested at any level

https:/lvtucode.in 40

Database Management System [21CS53]

i
Iki{;’/l
{f{: (t,
1
{\ (™ 2 ,-f" {\, (]
2) 2 b=) (b2 Pu)
Fygg =0 Fagf fyoy = Mgy =rtdyps 200 Tg fagr 40 ok ooy "~ TEaka Woni e Tomk

Figure 22.7 A granularity hierarchy for illustrating multiple granularity level locking

= To make multiple granularity level locking practical, additional types of locks, called
intention locks, are needed

= The idea behind intention locks is fora transaction to indicate, along the path from the root
to the desired node, what type of lock (shared or exclusive) it will require from one of the
node’s descendants.

= There are three types of intention locks:

1. Intention-shared (IS) indicates that one or more shared locks will be requested on some

descendant node(s).

2. Intention-exclusive (IX) indicates that one or more exclusive locks will be requested on
some descendant node(s).

3. Shared-intention-exclusive (SIX) indicates that the current node is locked in shared
mode but that one or more exclusive locks will be requested on some descendant
node(s).

= The compatibility table of the three intention locks, and the shared and exclusive locks, is
shown in Figure 22.8.

https:/ivtucode.in a1

Database Management System [21CS53]

IS Yes Yes Yes
X Yes Yes MNo
S Yes No Yes

SIX Yes No MNo

X No No No

Figure 22.8: Lock compatibility matrix for multiple granularity locking.

= The multiple granularity locking (MGL) protocol consists of the following rules:
1. The lock compatibility (based on Figure 22.8) must be adhered to.
2. The root of the tree must be locked first, in any mode.
3. A node N can be locked by a transaction T in S or IS mode only if the parent
node N is already locked by transaction T in either IS or IX mode.
4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the
parent of node N is already locked by transaction T in either IX or SIX mode.

5. Atransaction T can lock a node only if it has not unlocked any node (to

enforce the 2PL protocol).

6. A transaction T can unlock a node, N, only if none of the children of node N

are currently locked by T.

Yes
No
No
Mo

No

No
No
No
No

No

= The multiple granularity level protocol is especially suited when processing a mix of

transactions that include

(1) short transactions that access only a few items (records or fields) and

(2) long transactions that access entire files.

https:/Ilvtucode.in

42

