
Module 5

Chapter 1: Transaction Processing

5.0 Introduction
5.1 Objectives
5.2 Introduction to Transaction Processing

5.2.1 Single-User versus Multiuser Systems
5.2.2 Transactions, Database Items, Read and Write Operations, and DBMS Buffers
5.2.3 Why Concurrency Control Is Needed
5.2.4 Why Recovery Is Needed

5.3 Transaction and System Concepts
5.3.1 Transaction States and Additional Operations
5.3.2 The System Log
5.3.3 Commit Point of a Transaction:
5.3.4 DBMS specific buffer Replacement policies

5.4 Desirable Properties of Transactions
5.5 Characterizing Schedules Based on Recoverability
5.6 Characterizing Schedules Based on Serializability

5.6.1 Testing conflict serializability of a Schedule S
5.7 Transaction Support in SQL
5.8 Introduction to Concurrency Control
5.9 Two-Phase Locking Techniques for Concurrency Control

5.9.1 Types of Locks and System Lock Tables
5.9.2 Guaranteeing Serializability by Two-Phase Locking

5.10 Variations of Two-Phase Locking
5.11 Dealing with Deadlock and Starvation
5.11 Deadlock Detection.
5.13 Concurrency Control Based on Timestamp Ordering

5.13.1 Timestamps
5.13.2 The Timestamp Ordering Algorithm

5.14 Multiversion Concurrency Control Techniques
 5.14.1 Multiversion Technique Based on Timestamp Ordering

5.14.2 Multiversion Two-Phase Locking Using Certify Locks
5.15 Validation (Optimistic) Concurrency Control Techniques
5.16 Granularity of Data Items and Multiple Granularity Locking
 5.16.1 Granularity Level Considerations for Locking

5.16.2 Multiple Granularity Level Locking
5.17 Recovery Concepts

[21CS53]

https://vtucode.in

 5.17.1 Recovery Outline and Categorization of Recovery Algorithms
5.17.2 Caching (Buffering) of Disk Blocks
5.17.3 Write-Ahead Logging, Steal/No-Steal, and Force/No-Force
5.17.4 Checkpoints in the System Log and Fuzzy Checkpointing
5.17.5 Transaction Rollback and Cascading Rollback
5.17.6 Transaction Actions That Do Not Affect the Database

5.18 NO-UNDO/REDO Recovery Based on Deferred Update
5.19 Recovery Techniques Based on Immediate Update
5.20 Shadow Paging
5.21 The ARIES Recovery Algorithm
5.22 Database Backup and Recovery from Catastrophic Failures
5.23 Assignment Questions
5.24 Expected Outcome
5.25 Further Reading

[21CS53]

https://vtucode.in

5.0 Introduction

The concept of transaction provides a mechanism for describing logical units of database

processing. Transaction processing systems are systems with large databases and hundreds of

concurrent users executing database transactions. Examples:

 airline reservations

 banking

 credit card processing,

 online retail purchasing,

 Stock markets, supermarket checkouts, and many other applications

These systems require high availability and fast response time for hundreds of concurrent

users. A transaction is typically implemented by a computer program, which includes database

commands such as retrievals, insertions, deletions, and updates.

5.1 Objectives

 To study transaction properties

 To study creation of schedule and maintaining schedule equivalence.

 To check whether the given schedule is serailizable or not.

 To study protocols used for locking objects

 Differentiating between 2PL and Strict 2PL

5.2 Introduction to Transaction Processing

5.2.1 Single-User versus Multiuser Systems

 One criterion for classifying a database system is according to the number of users who

can use the system concurrently

Single-User versus Multiuser Systems

 A DBMS is

 single-user

 - at most one user at a time can use the system

 - Eg: Personal Computer System

 multiuser

 - many users can use the system and hence access the database concurrently

 - Eg: Airline reservation database

[21CS53]

https://vtucode.in

 Concurrent access is possible because of Multiprogramming. Multiprogramming can
be achieved by:

 interleaved execution
 Parallel Processing

 Multiprogramming operating systems execute some commands from one process,
then suspend that process and execute some commands from the next process, and so
on

 A process is resumed at the point where it was suspended whenever it gets its turn to
use the CPU again

 Hence, concurrent execution of processes is actually interleaved, as illustrated in

Figure 21.1

 Figure 21.1, shows two processes, A and B, executing concurrently in an interleaved
fashion

 Interleaving keeps the CPU busy when a process requires an input or output (I/O)
operation, such as reading a block from disk

 The CPU is switched to execute another process rather than remaining idle during I/O
time

 Interleaving also prevents a long process from delaying other processes.
 If the computer system has multiple hardware processors (CPUs), parallel processing

of multiple processes is possible, as illustrated by processes C and D in Figure 21.1
 Most of the theory concerning concurrency control in databases is developed in terms of

interleaved concurrency

 In a multiuser DBMS, the stored data items are the primary resources that may be

accessed concurrently by interactive users or application programs, which are constantly

retrieving information from and modifying the database.

[21CS53]

https://vtucode.in

5.2.2 Transactions, Database Items, Read and Write Operations, and DBMS

Buffers

 A Transaction an executing program that forms a logical unit of database processing

 It includes one or more DB access operations such as insertion, deletion, modification or

retrieval operation.

 It can be either embedded within an application program using begin transaction and

end transaction statements Or specified interactively via a high level query language

such as SQL

 Transaction which do not update database are known as read only transactions.

 Transaction which do update database are known as read write transactions.

 A database is basically represented as a collection of named data items The size of a

data item is called its granularity.

 A data item can be a database record, but it can also be a larger unit such as a whole

disk block, or even a smaller unit such as an individual field (attribute) value of some

record in the database

 Each data item has a unique name

 Basic DB access operations that a transaction can include are:

 read_item(X): Reads a DB item named X into a program variable.

 write_item(X): Writes the value of a program variable into the DB item named X

 Executing read_item(X) include the following steps:

1. Find the address of the disk block that contains item X

2. Copy the block into a buffer in main memory

3. Copy the item X from the buffer to program variable named X.

 Executing write_item(X) include the following steps:

1. Find the address of the disk block that contains item X

2. Copy the disk block into a buffer in main memory

3. Copy item X from program variable named X into its correct location in buffer.

4. Store the updated disk block from buffer back to disk (either immediately or later).

 Decision of when to store a modified disk block is handled by recovery manager of the

DBMS in cooperation with operating system.

 A DB cache includes a number of data buffers.

 When the buffers are all occupied a buffer replacement policy is used to choose one of

the buffers to be replaced. EG: LRU

[21CS53]

https://vtucode.in

 A transaction includes read_item and write_item operations to access and update DB.

 The read-set of a transaction is the set of all items that the transaction reads

 The write-set is the set of all items that the transaction writes

 For example, the read-set of T1 in Figure 21.2 is {X, Y} and its write-set is also {X, Y}.

5.2.3 Why Concurrency Control Is Needed

 Several problems can occur when concurrent transactions execute in an uncontrolled
manner

 Example:
 We consider an Airline reservation DB
 Each records is stored for an airline flight which includes Number of reserved seats

among other information.
 Types of problems we may encounter:

1. The Lost Update Problem

2. The Temporary Update (or Dirty Read) Problem

3. The Incorrect Summary Problem

4. The Unrepeatable Read Problem

[21CS53]

https://vtucode.in

 Transaction T1

 transfers N reservations from one flight whose number of reserved seats is stored

in the database item named X to another flight whose number of reserved seats is

stored in the database item named Y.

 Transaction T2

 reserves M seats on the first flight (X)

1. The Lost Update Problem

 occurs when two transactions that access the same DB items have their operations

interleaved in a way that makes the value of some DB item incorrect

 Suppose that transactions T1 and T2 are submitted at approximately the same time, and

suppose that their operations are interleaved as shown in Figure below

 Final value of item X is incorrect because T2 reads the value of X before T1 changes it in

the database, and hence the updated value resulting from T1 is lost.

 For example:

 X = 80 at the start (there were 80 reservations on the flight)

 N = 5 (T1 transfers 5 seat reservations from the flight corresponding

 to X to the flight corresponding to Y)

 M = 4 (T2 reserves 4 seats on X)

 The final result should be X = 79.

 The interleaving of operations shown in Figure is X = 84 because the update in T1 that

removed the five seats from X was lost.

[21CS53]

https://vtucode.in

2. The Temporary Update (or Dirty Read) Problem

 occurs when one transaction updates a database item and then the transaction fails for

some reason

 Meanwhile the updated item is accessed by another transaction before it is changed back

to its original value

3. The Incorrect Summary Problem

 If one transaction is calculating an aggregate summary function on a number of db items

while other transactions are updating some of these items, the aggregate function may

calculate some values before they are updated and others after they are updated.

[21CS53]

https://vtucode.in

4. The Unrepeatable Read Problem

 Transaction T reads the same item twice and gets different values on each read, since

the item was modified by another transaction T` between the two reads.

 for example, if during an airline reservation transaction, a customer inquires about seat

availability on several flights

 When the customer decides on a particular flight, the transaction then reads the number

of seats on that flight a second time before completing the reservation, and it may end

up reading a different value for the item.

5.2.4 Why Recovery Is Needed

 Whenever a transaction is submitted to a DBMS for execution, the system is responsible

for making sure that either

 1. All the operations in the transaction are completed successfully and their effect is

recorded permanently in the database or

 2.The transaction does not have any effect on the database or any other

transactions

 In the first case, the transaction is said to be committed, whereas in the second case,

the transaction is aborted

 If a transaction fails after executing some of its operations but before executing all of

them, the operations already executed must be undone and have no lasting effect.

 Types of failures

1. A computer failure (system crash):

 A hardware, software, or network error occurs in the computer system during

transaction execution

 Hardware crashes are usually media failures for example, main memory failure.

2. A transaction or system error:

 Some operation in the transaction may cause it to fail, such as integer overflow or

 division by zero

 Also occur because of erroneous parameter values

3. Local errors or exception conditions detected by the transaction:

 During transaction execution, certain conditions may occur that necessitate cancellation

of the transaction

[21CS53]

https://vtucode.in

 For example, data for the transaction may not be found

4. Concurrency control enforcement:

 The concurrency control may decide to abort a transaction because itviolates

serializability or several transactions are in a state of deadlock

5. Disk failure:

 Some disk blocks may lose their data because of a read or write malfunction or

because of a disk read/write head crash.

6. Physical problems and catastrophes:

 refers to an endless list of problems that includes power or air-conditioning failure, fire,

theft, overwriting disks or tapes by mistake

 Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6.

 Whenever a failure of type 1 through 4 occurs, the system must keep sufficient information to

quickly recover from the failure.

 Disk failure or other catastrophic failures of type 5 or 6 do not happen frequently; if they do

occur, recovery is a major task.

5.3 Transaction and System Concepts

5.3.1 Transaction States and Additional Operations

 A transaction is an atomic unit of work that should either be completed in its entirety or

not done at all. For recovery purposes, the system keeps track of start of a transaction,

termination, commit or aborts.

 BEGIN_TRANSACTION: marks the beginning of transaction execution

 READ or WRITE: specify read or write operations on the database items that are

executed as part of a transaction

 END_TRANSACTION: specifies that READ and WRITE transaction operations have

ended and marks the end of transaction execution

 COMMIT_TRANSACTION: signals a successful end of the transaction so that any

changes (updates) executed by the transaction can be safely committed to the

database and will not be undone

 ROLLBACK: signals that the transaction has ended unsuccessfully, so that any

changes or effects that the transaction may have applied to the database must be

undone

[21CS53]

https://vtucode.in

 A transaction goes into active state immediately after it starts execution and can

execute read and write operations.

 When the transaction ends it moves to partially committed state.

 At this end additional checks are done to see if the transaction can be committed or not.

If these checks are successful the transaction is said to have reached commit point and

enters committed state. All the changes are recorded permanently in the db.

 A transaction can go to the failed state if one of the checks fails or if the transaction is

aborted during its active state. The transaction may then have to be rolled back to undo

the effect of its write operation.

 Terminated state corresponds to the transaction leaving the system. All the information

about the transaction is removed from system tables.

5.3.2 The System Log

 Log or Journal keeps track of all transaction operations that affect the values of

database items

 This information may be needed to permit recovery from transaction failures.

 The log is kept on disk, so it is not affected by any type of failure except for disk or

catastrophic failure

 one (or more) main memory buffers hold the last part of the log file, so that log entries

are first added to the main memory buffer

 When the log buffer is filled, or when certain other conditions occur, the log buffer is

appended to the end of the log file on disk.

Figure: State transition diagram illustrating the states for transaction execution

[21CS53]

https://vtucode.in

 In addition, the log is periodically backed up to archival storage (tape) to guard against

such catastrophic failures

 The following are the types of entries called log records that are written to the log file

and the corresponding action for each log record.

 In these entries, T refers to a unique transaction-id that is generated automatically by

the system for each transaction and that is used to identify each transaction:

1. [start_transaction, T]. Indicates that transaction T has started execution.

2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has changed

the value of database item X from old_value to new_value.

3. [read_item, T, X]. Indicates that transaction T has read the value of database item X.

4. [commit, T]. Indicates that transaction T has completed successfully, and affirms that

its effect can be committed (recorded permanently) to the database.

5. [abort, T]. Indicates that transaction T has been aborted.

5.3.3 Commit Point of a Transaction:

 Definition a Commit Point:

 A transaction T reaches its commit point when all its operations that access the

database have been executed successfully and the effect of all the transaction

operations on the database has been recorded in the log.

 Beyond the commit point, the transaction is said to be committed, and its effect is

assumed to be permanently recorded in the database.

 The transaction then writes an entry [commit,T] into the log.

 Roll Back of transactions:

 Needed for transactions that have a [start_transaction,T] entry into the log but no

commit entry [commit,T] into the log.

5.3.4 DBMS specific buffer Replacement policies

Domain Separation(DS) method

 DBMS cache is divided into separate domains, each handles one type of disk pages

and replacements within each domain are handled via basic LRU page replacement.

 LRU is a static algorithm and does not adopts to dynamically changing loads because

the number of available buffers for each domain is predetermined.

 Group LRU adds dynamically load balancing feature since it gives each domain a

priority and selects pages from lower priority level domain first for replacement.

[21CS53]

https://vtucode.in

Hot Set Method:

 This is useful in queries that have to scan a set of pages repeatedly.

 The hot set method determines for each db processing algorithm the set of disk pages

that will be accessed repeatedly and it does not replace them until their processing is

completed.

The DBMIN method:

 uses a model known as QLSM (Query Locality set model), which predetermines the

pattern of page references for each algorithm for a particular db operation

 Depending on the type of access method, the file characteristics, and the algorithm

used the QLSM will estimate the number of main memory buffers needed for each file

involved in the operation.

5.4 Desirable Properties of Transactions

 Transactions should possess several properties, often called the ACID properties
 A Atomicity: a transaction is an atomic unit of processing and it is either performed

 entirely or not at all.

 C Consistency Preservation: a transaction should be consistency preserving that is it

 must take the database from one consistent state to another.

 I Isolation/Independence: A transaction should appear as though it is being executed

 in isolation from other transactions, even though many transactions are executed

 concurrently.

 D Durability (or Permanency): if a transaction changes the database and is committed,

 the changes must never be lost because of any failure.

 The atomicity property requires that we execute a transaction to completion. It is the

responsibility of the transaction recovery subsystem of a DBMS to ensure atomicity.

 The preservation of consistency is generally considered to be the responsibility of the

programmers who write the database programs or of the DBMS module that enforces

integrity constraints.

 The isolation property is enforced by the concurrency control subsystem of the DBMS.

If every transaction does not make its updates (write operations) visible to other

transactions until it is committed, one form of isolation is enforced that solves the

temporary update problem and eliminates cascading rollbacks

 Durability is the responsibility of recovery subsystem.

[21CS53]

https://vtucode.in

5.5 Characterizing Schedules Based on Recoverability

 schedule (or history): the order of execution of operations from all the various

transactions

 Schedules (Histories) of Transactions: A schedule S of n transactions T1, T2 n

is a sequential ordering of the operations of the n transactions.

 The transactions are interleaved

 Two operations in a schedule are said to conflict if they satisfy all three of the following

conditions:

 (1) they belong to different transactions;

 (2) they access the same item X; and

 (3) at least one of the operations is a write_item(X)

 Conflicting operations:

 r1(X) conflicts with w2(X) Read write conflict

 r2(X) conflicts with w1(X)

 w1(X) conflicts with w2(X) Write conflict

 r1(X) do not conflicts with r2(X)

Schedules classified on recoverability:

 Recoverable schedule:
 One where no transaction needs to be rolled back.
 A schedule S is recoverable if no transaction T in S commits until all transactions

 Example:

 Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;
 Sd: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2;

 Cascadeless schedule:
 One where every transaction reads only the items that are written by committed

transactions.
 Schedules requiring cascaded rollback:

 A schedule in which uncommitted transactions that read an item from a failed

transaction must be rolled back.

 Strict Schedules:

 A schedule in which a transaction can neither read or write an item X until the

last transaction that wrote X has committed.

[21CS53]

https://vtucode.in

5.6 Characterizing Schedules Based on Serializability

 schedules that are always considered to be correct when concurrent transactions are

executing are known as serializable schedules

 Suppose that two users for example, two airline reservations agents submit to the

DBMS transactions T1 and T2 at approximately the same time. If no interleaving of

operations is permitted, there are only two possible outcomes:

1. Execute all the operations of transaction T1 (in sequence) followed by all the

 operations of transaction T2 (in sequence).

2. Execute all the operations of transaction T2 (in sequence) followed by all the

 operations of transaction T1 (in sequence).

[21CS53]

https://vtucode.in

 Serial schedule:

 A schedule S is serial if, for every transaction T participating in the schedule, all

the operations of T are executed consecutively in the schedule.

 Otherwise, the schedule is called nonserial schedule.

 Serializable schedule:

 A schedule S is serializable if it is equivalent to some serial schedule of the same

n transactions.

 Result equivalent:

 Two schedules are called result equivalent if they produce the same final state of

the database.

 Conflict equivalent:

 Two schedules are said to be conflict equivalent if the order of any two conflicting

operations is the same in both schedules.

 Conflict serializable:

 A schedule S is said to be conflict serializable if it is conflict equivalent to some

 Being serializable is not the same as being serial
 Being serializable implies that the schedule is a correct schedule.

 It will leave the database in a consistent state.
 The interleaving is appropriate and will result in a state as if the transactions

were serially executed, yet will achieve efficiency due to concurrent execution.

5.6.1 Testing conflict serializability of a Schedule S

For each transaction Ti participating in schedule S,create a node labeled Ti in the

precedence graph.

For each case in S where Tj executes a read_item(X) after Ti executes a write_item(X),

create an edge (Ti Tj) in the precedence graph.

For each case in S where Tj executes a write_item(X) after Ti executes a read_item (X)

,create an edge (Ti Tj) in the precedence graph.

For each case in S where Tj executes a write_item(X) after Ti executes a write_item(X),

create an edge (Ti Tj) in the precedence graph.

The schedule S is serializable if and only if the precedence graph has no cycles.

[21CS53]

https://vtucode.in

Fig: Constructing the precedence graphs for schedules A and D from fig 21.5 to test for conflict

serializability.

(a) Precedence graph for serial schedule A.

(b) Precedence graph for serial schedule B.

(c) Precedence graph for schedule C (not serializable).

(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

 Another example of serializability testing. (a) The READ and WRITE operations of three

transactions T1, T2, and T3.

[21CS53]

https://vtucode.in

[21CS53]

https://vtucode.in

 Precedence graph for schedule E

 Precedence graph for schedule F

5.7 Transaction Support in SQL

 The basic definition of an SQL transaction is, it is a logical unit of work and is guaranteed

to be atomic

 A single SQL statement is always considered to be atomic either it completes

execution without an error or it fails and leaves the database unchanged

 With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is

done implicitly when particular SQL statements are encountered

 Every transaction must have an explicit end statement, which is either a COMMIT or a

ROLLBACK

 Every transaction has certain characteristics attributed to it and are specified by a SET

TRANSACTION statement in SQL

[21CS53]

https://vtucode.in

 The characteristics are :

 The access mode

 - can be specified as READ ONLY or READ WRITE

 - The default is READ WRITE

 - A mode of READ WRITE allows select, update, insert, delete, and create

 commands to be executed

 - A mode of READ ONLY, as the name implies, is simply for data retrieval.

 The diagnostic area size

 - DIAGNOSTIC SIZE n, specifies an integer value n, which indicates the

number of conditions that can be held simultaneously in the

 diagnostic area

 - These conditions supply feedback information (errors or exceptions) to the

 user or program on the n most recently executed SQL statement

 The isolation level
- specified using the statement ISOLATION LEVEL <isolation>, where the value for

<isolation> can be READ UNCOMMITTED, READ COMMITTED, REPEATABLE

READ, or SERIALIZABLE

 - The default isolation level is SERIALIZABLE

 - The use of the term SERIALIZABLE here is based on not allowing violations that

 cause dirty read, unrepeatable read, and phantoms

 - If a transaction executes at a lower isolation level than SERIALIZABLE, then one

 or more of the following three violations may occur:

1. Dirty read. A transaction T1 may read the update of a transaction T2, which

has not yet committed. If T2 fails and is aborted, then T1 would have read a

value that does not exist and is incorrect.

2. Nonrepeatable read. A transaction T1 may read a given value from a table. If

another transaction T2 later updates that value and T1 reads that value again,

T1 will see a different value.

3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps

based on some condition specified in the SQL WHERE-clause. Now suppose

that a transaction T2 inserts a new row that also satisfies the WHERE-clause

condition used in T1, into the table used by T1. If T1 is repeated, then T1 will

see a phantom, a row that previously did not exist.

[21CS53]

https://vtucode.in

 The transaction consists of first inserting a new row in the EMPLOYEE table and then

updating the salary of all employees who work in department 2

 If an error occurs on any of the SQL statements, the entire transaction is rolled back

 This implies that any updated salary (by this transaction) would be restored to its

previous value and that the newly inserted row would be removed.

[21CS53]

https://vtucode.in

Chapter 2: Concurrency Control in Databases

5.8 Introduction to Concurrency Control

 Purpose of Concurrency Control

 To enforce Isolation (through mutual exclusion) among conflicting transactions.

 To preserve database consistency through consistency preserving execution of

transactions.

 To resolve read-write and write-write conflicts.

 Example:

 In concurrent execution environment if T1 conflicts with T2 over a data item A, then

the existing concurrency control decides if T1 or T2 should get the A and if the other

transaction is rolled-back or waits.

5.9 Two-Phase Locking Techniques for Concurrency Control

 The concept of locking data items is one of the main techniques used for controlling the

concurrent execution of transactions.

 A lock is a variable associated with a data item in the database. Generally there is a lock

for each data item in the database.

 A lock describes the status of the data item with respect to possible operations that can be

applied to that item.

 It is used for synchronizing the access by concurrent transactions to the database items.

 A transaction locks an object before using it

 When an object is locked by another transaction, the requesting transaction must wait

5.9.1 Types of Locks and System Lock Tables

1. Binary Locks
 A binary lock can have two states or values: locked and unlocked (or 1

and 0).
 If the value of the lock on X is 1, item X cannot be accessed by a database

operation that requests the item

[21CS53]

https://vtucode.in

 If the value of the lock on X is 0, the item can be accessed when
requested, and the lock value is changed to 1

 We refer to the current value (or state) of the lock associated with item X
as lock(X).

 Two operations, lock_item and unlock_item, are used with binary
locking.

 A transaction requests access to an item X by first issuing a lock_item(X)
operation

 If LOCK(X) = 1, the transaction is forced to wait.
 If LOCK(X) = 0, it is set to 1 (the transaction locks the item) and the

transaction is allowed to access item X
 When the transaction is through using the item, it issues an

unlock_item(X) operation, which sets LOCK(X) back to 0 (unlocks the
item) so that X may be accessed by other transactions

 Hence, a binary lock enforces mutual exclusion on the data item.

Fig: 2.1.1 Lock and unlock operations for binary licks.

lock_item(X):

B: if LOCK(X) = 0 (* item is unlocked *)

 then LOCK(X)

 else

 begin

 wait (until LOCK(X) = 0

 and the lock manager wakes up the transaction);

 go to B

 end;

unlock_item(X):

LOCK(X

if any transactions are waiting

then wakeup one of the waiting transactions

[21CS53]

https://vtucode.in

 The lock_item and unlock_item operations must be implemented as indivisible units that

is, no interleaving should be allowed once a lock or unlock operation is started until the

operation terminates or the transaction waits

 The wait command within the lock_item(X) operation is usually implemented by putting

the transaction in a waiting queue for item X until X is unlocked and the transaction can

be granted access to it

 Other transactions that also want to access X are placed in the same queue.Hence, the

wait command is considered to be outside the lock_item operation.

 It is quite simple to implement a binary lock; all that is needed is a binary-valued

variable, LOCK, associated with each data item X in the database

 In its simplest form, each lock can be a record with three fields: <Data_item_name,

LOCK, Locking_transaction> plus a queue for transactions that are waiting to access the

item

 If the simple binary locking scheme described here is used, every transaction must obey

the following rules:

 1. A transaction T must issue the operation lock_item(X) before any

read_item(X) or write_item(X) operations are performed in T.

 2. A transaction T must issue the operation unlock_item(X) after all

read_item(X) and write_item(X) operations are completed in T.

3. A transaction T will not issue a lock_item(X) operation if it already holds the lock

on item X.

4. A transaction T will not issue an unlock_item(X) operation unless it already holds

the lock on item X.

2. Shared/Exclusive (or Read/Write) Locks

 binary locking scheme is too restrictive for database items because at most, one

transaction can hold a lock on a given item

 should allow several transactions to access the same item X if they all access X for

reading purposes only

 if a transaction is to write an item X, it must have exclusive access to X

 For this purpose, a different type of lock called a multiple-mode lock is used

 In this scheme called shared/exclusive or read/write locks there are three locking

operations: read_lock(X), write_lock(X), and unlock(X).

[21CS53]

https://vtucode.in

 A read-locked item is also called share-locked because other transactions are allowed

to read the item, whereas a write-locked item is called exclusive-locked because a

single transaction exclusively holds the lock on the item

 Method to implement read/write lock is to

 - keep track of the number of transactions that hold a shared (read) lock

 on an item in the lock table

 - Each record in the lock table will have four fields:

 <Data_item_name, LOCK, No_of_reads, Locking_transaction(s)>.

 If LOCK(X)=write-locked, the value of locking_transaction(s) is a single transaction that

holds the exclusive (write) lock on X

 If LOCK(X)=read-locked, the value of locking transaction(s) is a list of one or more

transactions that hold the shared (read) lock on X.

[21CS53]

https://vtucode.in

 When we use the shared/exclusive locking scheme, the system must enforce the following
rules:

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any
read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any write_item(X)
operation is performed in T.

3 A transaction T must issue the operation unlock(X) after all read_item(X) and
write_item(X) operations are completed in T.3

 4. A transaction T will not issue a read_lock(X) operation if it already holds a read (shared)
lock or a write (exclusive) lock on item X.

Conversion of Locks

 A transaction that already holds a lock on item X is allowed under certain conditions to

convert the lock from one locked state to another

 For example, it is possible for a transaction T to issue a read_lock(X) and then later to

upgrade the lock by issuing a write_lock(X) operation

 - If T is the only transaction holding a read lock on X at the time it issues

 the write_lock(X) operation, the lock can be upgraded;otherwise, the

 transaction must wait

5.9.2 Guaranteeing Serializability by Two-Phase Locking

[21CS53]

https://vtucode.in

 A transaction is said to follow the two-phase locking protocol if all locking operations

(read_lock, write_lock) precede the first unlock operation in the transaction

 Such a transaction can be divided into two phases:

 Expanding or growing (first) phase, during which new locks on items can be

acquired but none can be released

 Shrinking (second) phase, during which existing locks can be released but no

new locks can be acquired

 If lock conversion is allowed, then upgrading of locks (from read-locked to write-locked)

must be done during the expanding phase, and downgrading of locks (from write-locked

to read-locked) must be done in the shrinking phase.

 Transactions T1 and T2 in Figure 22.3(a) do not follow the two-phase locking protocol

because the write_lock(X) operation follows the unlock(Y) operation in T1, and similarly

the write_lock(Y) operation follows the unlock(X) operation in T2.

Figure 21.3 Transactions that do not
obey two-phase locking (a) Two
transactions T1 and T2 (b) Results of
possible serial schedules of T1 and T2
(c) A nonserializable schedule S that
uses locks

[21CS53]

https://vtucode.in

 If we enforce two-phase locking, the transactions can be rewritten as T T

in Figure 22.4.

 Now, the schedule shown in Figure 22.3(c) is not permitted for T1_ and T2_ (with their

modified order of locking and unlocking operations) under the rules of locking because T1_

will issue its write_lock(X) before it unlocks item Y; consequently, when T2_ issues its

read_lock(X), it is forced to wait until T1_ releases the lock by issuing an unlock (X) in the

schedule.

 If every transaction in a schedule follows the two-phase locking protocol, schedule

guaranteed to be serializable

 Two-phase locking may limit the amount of concurrency that can occur in a schedule

 Some serializable schedules will be prohibited by two-phase locking protocol

5.10 Variations of Two-Phase Locking

 Basic 2PL

 Technique described previously

 Conservative (static) 2PL

 Requires a transaction to lock all the items it accesses before the transaction

begins execution by predeclaring read-set and write-set

 Its Deadlock-free protocol

[21CS53]

https://vtucode.in

 Strict 2PL

 guarantees strict schedules

 Transaction does not release exclusive locks until after it commits or aborts

 no other transaction can read or write an item that is written by T unless T has

committed, leading to a strict schedule for recoverability

 Strict 2PL is not deadlock-free

 Rigorous 2PL

 guarantees strict schedules

 Transaction does not release any locks until after it commits or aborts

 easier to implement than strict 2PL

5.11 Dealing with Deadlock and Starvation

 Deadlock occurs when each transaction T in a set of two or more transactions is

waiting for some item that is locked by some other transaction T in the set.

 Hence, each transaction in the set is in a waiting queue, waiting for one of the other

transactions in the set to release the lock on an item.

 But because the other transaction is also waiting, it will never release the lock.

 A simple example is shown in Figure 22.5(a), where the two transactions T

T T X, which is

locked by T T Y, which is locked by T

neither T T X and Y

Figure 22.5 Illustrating the deadlock problem (a) A partial schedule of T T

state of deadlock (b) A wait-for graph for the partial schedule in (a)

[21CS53]

https://vtucode.in

Deadlock prevention protocols

 One way to prevent deadlock is to use a deadlock prevention protocol

 One deadlock prevention protocol, which is used in conservative two-phase locking,

requires that every transaction lock all the items it needs in advance. If any of the items

cannot be obtained, none of the items are locked. Rather, the transaction waits and then

tries again to lock all the items it needs.

 A second protocol, which also limits concurrency, involves ordering all the items in the

database and making sure that a transaction that needs several items will lock them

according to that order. This requires that the programmer (or the system) is aware of

the chosen order of the items

 Both approaches impractical

 Some of these techniques use the concept of transaction timestamp TS(T), which is a

unique identifier assigned to each transaction

 The timestamps are typically based on the order in which transactions are started; hence, if

transaction T1 starts before transaction T2, then TS(T1) < TS(T2).

 The older transaction (which starts first) has the smaller timestamp value.

 Protocols based on a timestamp

 Wait-die

 Wound-wait

 Suppose that transaction Ti tries to lock an item X but is not able to because X is locked

by some other transaction Tj with a conflicting lock. The rules followed by these

schemes are:

Wait-die. If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait; otherwise (Ti

younger than Tj) abort Ti (Ti dies) and restart it later with the same timestamp.

Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds Tj) and

restart it later with the same timestamp; otherwise (Ti younger than Tj) Ti is allowed to

wait.

 In wait-die, an older transaction is allowed to wait for a younger transaction, whereas a

younger transaction requesting an item held by an older transaction is aborted and

restarted.

 The wound-wait approach does the opposite: A younger transaction is allowed to wait

for an older one, whereas an older transaction requesting an item held by a younger

transaction preempts the younger transaction by aborting it.

[21CS53]

https://vtucode.in

 Both schemes end up aborting the younger of the two transactions (the transaction that

started later) that may be involved in a deadlock, assuming that this will waste less

processing.

 It can be shown that these two techniques are deadlock-free, since in wait-die,

transactions only wait for younger transactions so no cycle is created.

 Similarly, in wound-wait, transactions only wait for older transactions so no cycle is

created.

 Another group of protocols that prevent deadlock do not require timestamps. These

include the

 no waiting (NW) and

 cautious waiting (CW) algorithms

 No waiting algorithm,

 if a transaction is unable to obtain a lock, it is immediately aborted and then

restarted after a certain time delay without checking whether a deadlock will

actually occur or not.

 no transaction ever waits, so no deadlock will occur

 this scheme can cause transactions to abort and restart needlessly

 cautious waiting

 try to reduce the number of needless aborts/restarts

 Suppose that transaction Ti tries to lock an item X but is not able to do so because

X is locked by some other transaction Tj with a conflicting lock.

 The cautious waiting rules are as follows:

 If Tj is not blocked (not waiting for some other locked item), then Ti is

blocked and allowed to wait; otherwise abort Ti.

 It can be shown that cautious waiting is deadlock-free, because no transaction will

ever wait for another blocked transaction.

5.12 Deadlock Detection.

 A second, more practical approach to dealing with deadlock is deadlock detection,

where the system checks if a state of deadlock actually exists.

 This solution is attractive if we know there will be little interference among the

transactions that is, if different transactions will rarely access the same items at the

same time.

[21CS53]

https://vtucode.in

 This can happen if the transactions are short and each transaction locks only a few

items, or if the transaction load is light.

 On the other hand, if transactions are long and each transaction uses many items, or if

the transaction load is quite heavy, it may be advantageous to use a deadlock

prevention scheme.

 A simple way to detect a state of deadlock is for the system to construct and maintain a

wait-for graph.

 One node is created in the wait-for graph for each transaction that is currently executing.

 Whenever a transaction Ti is waiting to lock an item X that is currently locked by a

transaction Tj, a directed edge (Ti Tj) is created in the wait-for graph.

 When Tj releases the lock(s) on the items that Ti was waiting for, the directed edge is

dropped from the wait-for graph.We have a state of deadlock if and only if the wait-for

graph has a cycle.

 One problem with this approach is the matter of determining when the system should

check for a deadlock.

 One possibility is to check for a cycle every time an edge is added to the wait-for graph,

but this may cause excessive overhead.

 Criteria such as the number of currently executing transactions or the period of time

several transactions have been waiting to lock items may be used instead to check for a

cycle. Figure 22.5(b) shows the wait-for graph for the (partial) schedule shown in Figure

22.5(a).

 If the system is in a state of deadlock, some of the transactions causing the deadlock

must be aborted.

 Choosing which transactions to abort is known as victim selection.

 The algorithm for victim selection should generally avoid selecting transactions that have

been running for a long time and that have performed many updates, and it should try

instead to select transactions that have not made many changes (younger transactions).

 Timeouts

 Another simple scheme to deal with deadlock is the use of timeouts.

 This method is practical because of its low overhead and simplicity.

 In this method, if a transaction waits for a period longer than a system-defined

timeout period, the system assumes that the transaction may be deadlocked and

aborts it regardless of whether a deadlock actually exists or not.

[21CS53]

https://vtucode.in

 Starvation.

 Another problem that may occur when we use locking is starvation, which occurs

when a transaction cannot proceed for an indefinite period of time while other

transactions in the system continue normally.

 This may occur if the waiting scheme for locked items is unfair, giving priority to

some transactions over others

 One solution for starvation is to have a fair waiting scheme, such as using a first-

 come-first-served queue; transactions are enabled to lock an item in the order in

 which they originally requested the lock.

 Another scheme allows some transactions to have priority over others but

increases the priority of a transaction the longer it waits, until it eventually gets the

highest priority and proceeds.

 Starvation can also occur because of victim selection if the algorithm selects the

same transaction as victim repeatedly, thus causing it to abort and never finish

execution.

 The algorithm can use higher priorities for transactions that have been aborted

multiple times to avoid this problem.

5.13 Concurrency Control Based on Timestamp Ordering

guarantees serializability using transaction timestamps to order transaction execution

for an equivalent serial schedule

 5.13.1 Timestamps

 timestamp is a unique identifier created by the DBMS to identify a transaction.

 Typically, timestamp values are assigned in the order in which the transactions are

submitted to the system, so a timestamp can be thought of as the transaction start

time.

 We will refer to the timestamp of transaction T as TS(T).

 Concurrency control techniques based on timestamp ordering do not use

locks;hence, deadlocks cannot occur.

 Timestamps can be generated in several ways.

 One possibility is to use a counter that is incremented each time its value is

assigned to a transaction. The transaction timestamps are numbered 1, 2, 3,

[21CS53]

https://vtucode.in

... in this scheme. A computer counter has a finite maximum value, so the

system must periodically reset the counter to zero when no transactions are

executing for some short period of time.

 Another way to implement timestamps is to use the current date/time value of

the system clock and ensure that no two timestamp values are generated

during the same tick of the clock.

 5.13.2 The Timestamp Ordering Algorithm

 The idea for this scheme is to order the transactions based on their

timestamps.

 A schedule in which the transactions participate is then serializable, and the

only equivalent serial schedule permitted has the transactions in order of their

timestamp values. This is called timestamp ordering (TO).

 The algorithm must ensure that, for each item accessed by conflicting

Operations in the schedule, the order in which the item is accessed does not

violate the timestamp order.

 To do this, the algorithm associates with each database item X two timestamp

(TS) values:

1. read_TS(X). The read timestamp of item X is the largest timestamp

among all the timestamps of transactions that have successfully

read item X that is, read_TS(X) = TS(T), where T is the youngest

transaction that has read X successfully.

2. write_TS(X). The write timestamp of item X is the largest of all the

timestamps of transactions that have successfully written item X

that is, write_TS(X) = TS(T), where T is the youngest transaction that

has written X successfully.

Basic Timestamp Ordering (TO).

 Whenever some transaction T tries to issue a read_item(X) or a write_item(X) operation,

the basic TO algorithm compares the timestamp of T with read_TS(X) and write_TS(X) to

ensure that the timestamp order of transaction execution is not violated.

 If this order is violated, then transaction T is aborted and resubmitted to the system as a

new transaction with a new timestamp.

 If T is aborted and rolled back, any transaction T1 that may have used a value written by T

must also be rolled back.

[21CS53]

https://vtucode.in

 Similarly, any transaction T2 that may have used a value written by T1 must also be rolled

back, and so on. This effect is known as cascading rollback and is one of the problems

associated with basic TO, since the schedules produced are not guaranteed to be

recoverable.

 An additional protocol must be enforced to ensure that the schedules are recoverable,

cascadeless, or strict.

 The basic TO algorithm :

 The concurrency control algorithm must check whether conflicting operations violate

the timestamp ordering in the following two cases:

1. Whenever a transaction T issues a write_item(X) operation, the following is

checked:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and

reject the operation. This should be done because some younger transaction

with a timestamp greater than TS(T) and hence after T in the timestamp

ordering has already read or written the value of item X before T had a chance

to write X, thus violating the timestamp ordering.

b.If the condition in part (a) does not occur, then execute the write_item(X)

operation of T and set write_TS(X) to TS(T).

2. Whenever a transaction T issues a read_item(X) operation, the following is checked:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. This

should be done because some younger transaction with timestamp greater than

TS(T) and hence after T in the timestamp ordering has already written the

value of item X before T had a chance to read X.

b. If write_TS(X T), then execute the read_item(X) operation of T and set

read_TS(X) to the larger of TS(T) and the current read_TS(X).

 Whenever the basic TO algorithm detects two conflicting operations that occur in

the incorrect order, it rejects the later of the two operations by aborting the

transaction that issued it. The schedules produced by basic TO are hence

guaranteed to be conflict serializable

Strict Timestamp Ordering (TO)

 A variation of basic TO called strict TO ensures that the schedules are both strict

(for easy recoverability) and (conflict) serializable.

[21CS53]

https://vtucode.in

 In this variation, a transaction T that issues a read_item(X) or write_item(X) such

that TS(T) > write_TS(X) has its read or write operation delayed until the transaction

T that wrote the value of X (hence TS(T) = write_TS(X)) has committed or aborted.

 To implement this algorithm, it is necessary to simulate the locking of an item X that

 has been written by transaction T until T is either committed or aborted. This

 algorithm does not cause deadlock, since T waits for T only if TS(T) > TS(T_).

 A modification of the basic TO algorithm, known as , does not

enforce conflict serializability, but it rejects fewer write operations by modifying the

checks for the write_item(X) operation as follows:

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue

 processing. This is because some transaction with timestamp greater than TS(T)

 and hence after T in the timestamp ordering has already written the value of X.

 Thus, we must ignore the write_item(X) operation of T because it is already outdated

 and obsolete. Notice that any conflict arising from this situation would be detected by

 case (1).

If neither the condition in part (1) nor the condition in part (2) occurs, then execute

the write_item(X) operation of T and set write_TS(X) to TS(T).

5.14 Multiversion Concurrency Control Techniques

 Other protocols for concurrency control keep the old values of a data item when the

item is updated. These are known as multiversion concurrency control, because

several versions (values) of an item are maintained

 When a transaction requires access to an item, an appropriate version is chosen to

maintain the serializability of the currently executing schedule, if possible.

 The idea is that some read operations that would be rejected in other techniques can

still be accepted by reading an older version of the item to maintain serializability.When

a transaction writes an item, it writes a new version and the old version(s) of the item

are retained

 An obvious drawback of multiversion techniques is that more storage is needed to maintain

multiple versions of the database items

[21CS53]

https://vtucode.in

5.14.1 Multiversion Technique Based on Timestamp Ordering

 In this method, several versions X1, X2, ..., Xk of each data item X are maintained.

 For each version, the value of version Xi and the following two timestamps are kept:

1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps of

 transactions that have successfully read version Xi.

2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transaction

 that wrote the value of version Xi.

 Whenever a transaction T is allowed to execute a write_item(X) operation, a new

 version Xk+1 of item X is created, with both the write_TS(Xk+1) and the

 read_TS(Xk+1) set to TS(T)

 Correspondingly, when a transaction T is allowed to read the value of version Xi, the

 value of read_TS(Xi) is set to the larger of the current read_TS(Xi) and TS(T).

 To ensure serializability, the following rules are used:

1. If transaction T issues a write_item(X) operation, and version i of X has the

highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T),

and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise,

create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has

the highest write_TS(Xi) of all versions of X that is also less than or equal to

TS(T); then return the value of Xi to transaction T, and set the value of read_TS(

Xi) to the larger of TS(T) and the current read_TS(Xi).

5.14.2 Multiversion Two-Phase Locking Using Certify Locks

 In this multiple-mode locking scheme, there are three locking modes for an item:

 read, write, and certify

 Hence, the state of LOCK(X) for an item X can be one of read-locked, writelocked,

 certify-locked, or unlocked

 We can describe the relationship between read and write locks in the standard

scheme by means of the lock compatibility table shown in Figure 22.6(a)

 An entry of Yes means that if a transaction T holds the type of lock specified in the

column header on item X and if transaction T_ requests the type of lock specified in

[21CS53]

https://vtucode.in

the row header on the same item X, then T_ can obtain the lock because the locking

modes are compatible

Figure 22.6: Lock compatibility tables. (a) A compatibility table for read/write locking scheme.
(b) A compatibility table for read/write/certify locking scheme.

 On the other hand, an entry of No in the table indicates that the locks are not compatible,

so T must wait until T releases the lock

 The idea behind multiversion 2PL is to allow other transactions T X

while a single transaction T holds a write lock on X

 This is accomplished by allowing two versions for each item X; one version must always

have been written by some committed transaction

 The second version X is created when a transaction T acquires a write lock on the item

5.15 Validation (Optimistic) Concurrency Control Techniques

 In optimistic concurrency control techniques, also known as validation or

certification techniques, no checking is done while the transaction is executing

 In this scheme, updates in the transaction are not applied directly to the database items

until the transaction reaches its end

[21CS53]

https://vtucode.in

 During transaction execution, all updates are applied to local copies of the data items

that are kept for the transaction

 At the end of transaction execution, a validation phase checks whether any of the

.

 There are three phases for this concurrency control protocol:

1. Read phase. A transaction can read values of committed data items from the

database. However, updates are applied only to local copies (versions) of the data

items kept in the transaction workspace.

2. Validation phase. Checking is performed to ensure that serializability will not be

violated if the transaction updates are applied to the database.

3. Write phase. If the validation phase is successful, the transaction updates are

applied to the database; otherwise, the updates are discarded and the transaction is

restarted.

 The idea behind optimistic concurrency control is to do all the checks at once; hence,

transaction execution proceeds with a minimum of overhead until the validation phase is

reached

 The techniques are called optimistic because they assume that little interference will

occur and hence that there is no need to do checking during transaction execution.

 The validation phase for Ti checks that, for each such transaction Tj that is either

 committed or is in its validation phase, one of the following conditions holds:

1. Transaction Tj completes its write phase before Ti starts its read phase.

2. Ti starts its write phase after Tj completes its write phase, and the read_set

 of Ti has no items in common with the write_set of Tj.

3. Both the read_set and write_set of Ti have no items in common with the

write_set of Tj, and Tj completes its read phase before Ti completes its read

 phase.

5.16 Granularity of Data Items and Multiple Granularity Locking

 All concurrency control techniques assume that the database is formed of a number

 of named data items. A database item could be chosen to be one of the following:

A database record

A field value of a database record

A disk block

A whole file

[21CS53]

https://vtucode.in

The whole database

 The granularity can affect the performance of concurrency control and recovery

5.16.1 Granularity Level Considerations for Locking

 The size of data items is often called the data item granularity.

 Fine granularity refers to small item sizes, whereas coarse granularity refers to large

item sizes

 The larger the data item size is, the lower the degree of concurrency permitted.

 For example, if the data item size is a disk block, a transaction T that needs to lock a

record B must lock the whole disk block X that contains B because a lock is associated

with the whole data item (block). Now, if another transaction S wants to lock a different

record C that happens to reside in the same block X in a conflicting lock mode, it is

forced to wait. If the data item size was a single record, transaction S would be able to

proceed, because it would be locking a different data item (record).

 The smaller the data item size is, the more the number of items in the database.

Because every item is associated with a lock, the system will have a larger number of

active locks to be handled by the lock manager. More lock and unlock operations will be

performed, causing a higher overhead

 The best item size depends on the types of transactions involved.

 If a typical transaction accesses a small number of records, it is advantageous to have

the data item granularity be one record

 On the other hand, if a transaction typically accesses many records in the same file, it

may be better to have block or file granularity so that the transaction will consider all

those records as one (or a few) data items

5.16.2 Multiple Granularity Level Locking

 Since the best granularity size depends on the given transaction, it seems appropriate

that a database system should support multiple levels of granularity, where the

granularity level can be different for various mixes of transactions

 Figure 22.7 shows a simple granularity hierarchy with a database containing two files,

each file containing several disk pages, and each page containing several records.

 This can be used to illustrate a multiple granularity level 2PL protocol, where a lock

can be requested at any level

[21CS53]

https://vtucode.in

Figure 22.7 A granularity hierarchy for illustrating multiple granularity level locking

 To make multiple granularity level locking practical, additional types of locks, called

intention locks, are needed

 The idea behind intention locks is for a transaction to indicate, along the path from the root

to the desired node, what type of lock (shared or exclusive) it will require from one of the

 There are three types of intention locks:

1. Intention-shared (IS) indicates that one or more shared locks will be requested on some

 descendant node(s).

2. Intention-exclusive (IX) indicates that one or more exclusive locks will be requested on

 some descendant node(s).

3. Shared-intention-exclusive (SIX) indicates that the current node is locked in shared

 mode but that one or more exclusive locks will be requested on some descendant

 node(s).

 The compatibility table of the three intention locks, and the shared and exclusive locks, is

shown in Figure 22.8.

[21CS53]

https://vtucode.in

Figure 22.8: Lock compatibility matrix for multiple granularity locking.

 The multiple granularity locking (MGL) protocol consists of the following rules:

1. The lock compatibility (based on Figure 22.8) must be adhered to.

2. The root of the tree must be locked first, in any mode.

3. A node N can be locked by a transaction T in S or IS mode only if the parent

 node N is already locked by transaction T in either IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the

 parent of node N is already locked by transaction T in either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any node (to

 enforce the 2PL protocol).

6. A transaction T can unlock a node, N, only if none of the children of node N

 are currently locked by T.

 The multiple granularity level protocol is especially suited when processing a mix of

transactions that include

 (1) short transactions that access only a few items (records or fields) and

 (2) long transactions that access entire files.

[21CS53]

https://vtucode.in

