
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 1 ~

Question Bank on Module 3(Strings and File Handling)

1. Discuss various methods in a string with an example program using at least 5 methods.
In Python, a string is a sequence of characters, which can be accessed, modified, and
manipulated using various built-in methods. Here are some common string methods in Python
with examples:

a. upper() and lower(): These methods return a new string with all letters in upper or
lower case, respectively.

string = "Hello, World!"
print(string.upper()) # prints "HELLO, WORLD!"
print(string.lower()) # prints "hello, world!"

b. strip(), lstrip(), and rstrip(): These methods remove whitespace characters from the
beginning and/or end of a string.

string = " Hello, World! "
print(string.strip()) # prints "Hello, World!"
print(string.lstrip()) # prints "Hello, World! "
print(string.rstrip()) # prints " Hello, World!"

c. replace(): This method returns a new string with all occurrences of a substring replaced
by another substring.

string = "Hello, World!"
new_string = string.replace("World", "Python")
print(new_string) # prints "Hello, Python!"

d. split() and join(): These methods are used to split a string into a list of substrings or to
join a list of substrings into a single string.

string = "Hello, World!"
words = string.split(", ")
print(words) # prints ["Hello", "World!"]

new_string = "-".join(words)
print(new_string) # prints "Hello-World!"

e. find(), index(), and count(): These methods are used to search for a substring within a
string, and to count the occurrences of a substring within a string.

string = "Hello, World!"
index = string.find("World")
print(index) # prints 7

index = string.index("World")
print(index) # prints 7

count = string.count("l")
print(count) # prints 3

NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 2 ~

Overall Example program using all the above methods:
string = " The quick brown fox jumps over the lazy dog "

upper and lower
print(string.upper()) # prints " THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG "
print(string.lower()) # prints " the quick brown fox jumps over the lazy dog "

strip, lstrip, and rstrip
print(string.strip()) # prints "The quick brown fox jumps over the lazy dog"
print(string.lstrip()) # prints "The quick brown fox jumps over the lazy dog "
print(string.rstrip()) # prints " The quick brown fox jumps over the lazy dog"

replace
new_string = string.replace("lazy", "sleepy")
print(new_string) # prints " The quick brown fox jumps over the sleepy dog "

split and join
words = string.split()
print(words) # prints ["The", "quick", "brown", "fox", "jumps", "over", "the", "lazy",
"dog"]

new_string = "-".join(words)
print(new_string) # prints "The-quick-brown-fox-jumps-over-the-lazy-dog"

find, index, and count
index = string.find("fox")
print(index) # prints 18

index = string.index("fox")
print(index) # prints 18

count = string.count("o")
print(count) # prints 5

2. Relate String and List in Python
String:
String is a sequence of characters and it is represented within double quotes or single quotes. Strings
are immutable.
Example: s=”hello”
List:
A list is an ordered set of values, where each value is identified by an index. The values that make up a
list are called its elements. Lists are similar to strings, which are ordered sets of characters, except that
the elements of a list can have any type and it is mutable.

NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 3 ~

 Example:
b= [’a’, ’b’, ’c’, ’d’, 1, 3]

In Python, strings and lists are both sequence types and share some similarities in their behaviors and
methods. Here are some ways in which strings and lists are related:

Both are sequences: A string is a sequence of characters, while a list is a sequence of any type of values.

Indexing: Both strings and lists can be indexed. That means you can access individual elements of a
string or a list using an index. For example, string[0] and list[0] both return the first element of the
sequence.

Slicing: Both strings and lists can be sliced. That means you can create a new string or list by extracting a
portion of the original sequence. For example, string[1:4] and list[1:4] both return a new sequence
consisting of the second, third, and fourth elements of the original sequence.

Concatenation: Both strings and lists can be concatenated. That means you can create a new sequence
by combining two or more sequences. For example, "Hello" + "World" returns the string "HelloWorld",
and [1, 2] + [3, 4] returns the list [1, 2, 3, 4].

Iteration: Both strings and lists can be iterated over using a for loop. That means you can loop over all
the elements in a string or a list.

Some methods: Some methods such as split() and join() can be used both with strings and lists. For
example, string.split() and list.split() both return a list of substrings, and " ".join(list) and " ".join(string)
both join a list or a string with spaces.

While strings and lists share some similarities, they are also different in some important ways. For
example, strings are immutable, meaning that you cannot change the characters in a string, while lists
are mutable, meaning that you can add, remove, or modify elements in a list. Additionally, strings have
some methods that are specific to strings, such as upper() and lower(), while lists have some methods
that are specific to lists, such as append() and sort().

3. Write a Python program to count the number of vowels in a string provided by the user
string = input("Enter a string: ")
vowels = "aeiouAEIOU"
count = 0

for char in string:
 if char in vowels:
 count += 1

NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 4 ~

print("Number of vowels in the string: ", count)
4. Write a program that takes a sentence as input from the user and computes the frequency of

each letter. Use a variable of dictionary type to maintain the count
sentence = input("Enter a sentence: ")
letter_count = {}

for letter in sentence:
 if letter.isalpha():
 letter = letter.lower()
 if letter in letter_count:
 letter_count[letter] += 1
 else:
 letter_count[letter] = 1

print("Letter frequency:")
for letter, count in letter_count.items():
 print(letter, count)

5. Analyze string slicing. Illustrate how it is done in python with an example
In Python, strings are sequences of characters, which can be accessed, modified, and
manipulated using a variety of built-in methods. A string can be sliced using the square bracket
notation.
The syntax is string[start:end:step], where start is the index of the first character to include in
the slice (inclusive), end is the index of the last character to include in the slice (exclusive), and
step is the increment between characters. For example:

string = "Hello, World!"
print(string[7:]) # prints "World!"
print(string[::2]) # prints "Hlo ol!"

6. Explain the syntax of reading and writing files in python.

Syntax for reading the contents of the file:
 filehandle = open(filename, “r”)
 data = filehandle.read()

where filename if the fully qualified name of the file & filehandle is the reference variable to the
file object.

Example:
 fp = open(“sample.txt”, “r”)
 data = fp.read()
Syntax for writing the contents to the file:
 filehandle = open(filename, “w”)
 filehandle.write(data)

where filename if the fully qualified name of the file & filehandle is the reference variable to the
file object.

 Example:

NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 5 ~

 fp = open(“sample.txt”, “w+”)
 fp.write(“Sample data to be written to the file”)

7. Describe the different access modes of the files with examples.

• "r" (read-only): This mode allows you to open a file for reading only. You cannot modify
the contents of the file using this mode. Example: file = open("example.txt", "r").

• "w" (write-only): This mode allows you to open a file for writing only. If the file already
exists, its contents will be deleted before writing to it. If the file does not exist, it will be
created. Example: file = open("example.txt", "w").

• "a" (append): This mode allows you to open a file for appending new data to it. If the file
already exists, new data will be added to the end of the file. If the file does not exist, it will
be created. Example: file = open("example.txt", "a").

• "x" (exclusive creation): This mode allows you to open a file for writing, but only if it does
not already exist. If the file already exists, a FileExistsError exception will be raised.
Example: file = open("example.txt", "x").

• "b" (binary mode): This mode allows you to open a file in binary mode, which is used to
read or write non-text files, such as images or audio. This mode can be used with any of the
above modes, by adding "b" to the end of the mode string. Example: file =
open("example.jpg", "rb").

• "+" (read-write mode): This mode allows you to open a file for both reading and writing.
This mode can be used with any of the above modes, by adding "+" to the end of the mode
string. Example: file = open("example.txt", "r+").

Example:

Open a file in read-only mode and print its contents
file = open("example.txt", "r")
print(file.read())
file.close()

Open a file in write-only mode and write some data to it
file = open("example.txt", "w")
file.write("This is some data.")
file.close()

Open a file in append mode and add more data to it
file = open("example.txt", "a")
file.write("\nThis is more data.")
file.close()

Open a file in exclusive creation mode and try to write to it
try:
 file = open("example.txt", "x")
 file.write("This will not work.")
 file.close()
except FileExistsError:
 print("File already exists.")

Open a binary file in read mode and print its contents
file = open("example.jpg", "rb")
print(file.read())
file.close()

NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 6 ~

Open a file in read-write mode and modify its contents
file = open("example.txt", "r+")
data = file.read()
data = data.replace("data", "text")
file.seek(0)
file.write(data)
file.close()

8. Discuss the following methods associated with the file object with suitable examples.

a) read() b) readline() c) readlines() d) seek() e) write()

a) read(): The read() method reads the entire contents of a file and returns them as a string.

Here's an example:
Open a file and read its contents
with open("example.txt", "r") as file:
 data = file.read()
 print(data)

b) readline(): The readline() method reads a single line from a file and returns it as a string. If
you call this method again, it will return the next line in the file.

Open a file and read its contents line by line
with open("example.txt", "r") as file:
 line = file.readline()
 while line:
 print(line)
 line = file.readline()

c) readlines(): The readlines() method reads all the lines of a file and returns them as a list of
strings.

Open a file and read its contents into a list
with open("example.txt", "r") as file:
 lines = file.readlines()
 print(lines)

d) seek(): The seek() method moves the file pointer to a specific position in the file. The file
pointer is the position in the file where the next read or write operation will occur.

Open a file and move the file pointer to a specific position
with open("example.txt", "r") as file:
 file.seek(5)
 data = file.read()
 print(data)

e) write(): The write() method writes a string to a file. If the file does not exist, it will be
created. If the file already exists, the contents will be overwritten.

Open a file and write some data to it
with open("example.txt", "w") as file:
 file.write("This is some data.")

NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 7 ~

9. Write Python Program to reverse each word in “words.txt” file.

Open the input and output files
with open("words.txt", "r") as input_file:
Read each line from the input file
 for line in input_file:
 # Split the line into a list of words
 words = line.strip().split()
 # Reverse each word and write to the output file
 for word in words:
 reversed_words = word[::-1]
 print(reversed_words)

10. Write Python Program to count the Occurrences of each word and also count the number of
words in a “quotes.txt” File.

Open the input file
with open("quotes.txt", "r") as file:
 # Initialize a dictionary to store the word counts
 word_counts = {}

 # Loop through each line in the file
 for line in file:
 # Split the line into a list of words
 words = line.strip().split()

 # Loop through each word and update the word counts
 for word in words:
 if word not in word_counts:
 word_counts[word] = 1
 else:
 word_counts[word] += 1

 # Count the total number of words
 total_words = sum(word_counts.values())
 # Print the word counts and total number of words
 print("Word counts:")
 for word, count in word_counts.items():
 print(f"{word}: {count}")
 print(f"Total words: {total_words}")

11. Write Python Program to find the longest word in the specified file.
Function to find the longest word in a file
def find_longest_word(filename):
 # Open the file in read mode

NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 8 ~

 with open(filename, "r") as file:
 # Initialize the longest word to an empty string
 longest_word = ""

 # Loop through each line in the file
 for line in file:
 # Split the line into a list of words
 words = line.strip().split()

 # Loop through each word and update the longest word
 for word in words:
 if len(word) > len(longest_word):
 longest_word = word

 # Return the longest word
 return longest_word

Example usage: find the longest word in "words.txt"
filename = "words.txt"
longest_word = find_longest_word(filename)
print(f"The longest word in {filename} is '{longest_word}' with {len(longest_word)} characters.")

12. Write a python program that counts the number of words in a file.
f=open("test.txt","r")
content =f.readline(20)
words =content.split()
print(words)

13. Write a python program to count number of lines, words and characters in a text file
Function to count the number of lines, words, and characters in a file
def count_file_stats(filename):
 # Open the file in read mode
 with open(filename, "r") as file:
 # Initialize the line, word, and character counts to 0
 num_lines = 0
 num_words = 0
 num_chars = 0

 # Loop through each line in the file
 for line in file:
 # Increment the line count
 num_lines += 1

 # Split the line into a list of words
 words = line.strip().split()

NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 9 ~

 # Increment the word and character counts
 num_words += len(words)
 num_chars += len(line)

 # Return a dictionary of the counts
 return {"lines": num_lines, "words": num_words, "characters": num_chars}

Example usage: count the lines, words, and characters in "text.txt"
filename = "text.txt"
file_stats = count_file_stats(filename)
print(f"{filename} contains {file_stats['lines']} lines, {file_stats['words']} words, and
{file_stats['characters']} characters.")

14. Write a python program to check whether the given string is palindrome or not
def is_palindrome(string):
 # Convert the string to lowercase and remove whitespace and punctuation
 string = string.lower().replace(" ", "").replace(",", "").replace(".", "")

 # Check if the string is equal to its reverse
 return string == string[::-1]

Example usage: check if a string is a palindrome
string = input(“Enter a String”)
if is_palindrome(string):
 print(f"{string} is a palindrome.")
else:
 print(f"{string} is not a palindrome.")

