
NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 1 ~

PYTHON APPLICATION PROGRAMMING [15CS664]

MODULE – 2
3.1 LISTS
A list is an ordered sequence of values. It is a data structure in Python. The values inside the lists
can be of any type (like integer, float, strings, lists, tuples, dictionaries etc) and are called as
elements or items. The elements of lists are enclosed within square brackets. For example,

ls1=[10,-4, 25, 13]
ls2=[“Tiger”, “Lion”, “Cheetah”]

Here, ls1 is a list containing four integers, and ls2 is a list containing three strings. A list need
not contain data of same type. We can have mixed type of elements in list. For example,

ls3=[3.5, ‘Tiger’, 10, [3,4]]

Here, ls3 contains a float, a string, an integer and a list. This illustrates that a list can be nested
as well.

An empty list can be created any of the following ways –
>>> ls =[]
>>> type(ls)

<class 'list'>
or

>>> ls =list()
>>> type(ls)

<class 'list'>

In fact, list() is the name of a method (special type of method called as constructor – which will
be discussed in Module 4) of the class list. Hence, a new list can be created using this function by
passing arguments to it as shown below –

>>> ls2=list([3,4,1])
>>> print(ls2)

[3, 4, 1]

3.1.1 Lists are Mutable
The elements in the list can be accessed using a numeric index within square-brackets. It is similar
to extracting characters in a string.

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[1])

hi
>>> print(ls[2])

[2, 3]
PYTHON APPLICATION PROGRAMMING [15CS664]

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 2 ~

Observe here that, the inner list is treated as a single element by outer list. If we would like to
access the elements within inner list, we need to use double-indexing as shown below –

>>> print(ls[2][0])
2

>>> print(ls[2][1])
3

Note that, the indexing for inner-list again starts from 0. Thus, when we are using double indexing,
the first index indicates position of inner list inside outer list, and the second index means the
position particular value within inner list.

Unlike strings, lists are mutable. That is, using indexing, we can modify any value within list. In the
following example, the 3rd element (i.e. index is 2) is being modified –

>>> ls=[34, 'hi', [2,3],-5]
>>> ls[2]='Hello'
>>> print(ls)

[34, 'hi', 'Hello', -5]

The list can be thought of as a relationship between indices and elements. This relationship is
called as a mapping. That is, each index maps to one of the elements in a list.
The index for extracting list elements has following properties –

 Any integer expression can be an index.
>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[2*1])

'Hello'
 Attempt to access a non-existing index will throw and IndexError.

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[4])
IndexError: list index out of range

 A negative indexing counts from backwards.
>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[-1])

-5
>>> print(ls[-3])

hi

The in operator applied on lists will results in a Boolean value.
>>> ls=[34, 'hi', [2,3],-5]
>>> 34 in ls

True
>>> -2 in ls

False
PYTHON APPLICATION PROGRAMMING [15CS664]

3.1.2 Traversing a List

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 3 ~

A list can be traversed using for loop. If we need to use each element in the list, we can use the for
loop and in operator as below –

>>> ls=[34, 'hi', [2,3],-5]
>>> for item in ls:

print(item)

34 hi
Hello
-5

List elements can be accessed with the combination of range() and len() functions as well –

ls=[1,2,3,4]
for i in range(len(ls)):

ls[i]=ls[i]**2

print(ls) #output is [1, 4, 9, 16]

Here, we wanted to do modification in the elements of list. Hence, referring indices is suitable than
referring elements directly. The len() returns total number of elements in the list (here it is 4). Then
range() function makes the loop to range from 0 to 3 (i.e. 4-1). Then, for every index, we are
updating the list elements (replacing original value by its square).
3.1.3 List Operations
Python allows to use operators + and * on lists. The operator + uses two list objects and returns
concatenation of those two lists. Whereas * operator take one list object and one integer value,
say n, and returns a list by repeating itself for n times.

>>> ls1=[1,2,3]
>>> ls2=[5,6,7]

>>> print(ls1+ls2) #concatenation using +
[1, 2, 3, 5, 6, 7]

>>> ls1=[1,2,3]
>>> print(ls1*3) #repetition using *

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> [0]*4 #repetition using *
[0, 0, 0, 0]

3.1.4 List Slices
Similar to strings, the slicing can be applied on lists as well. Consider a list t given below, and a
series of examples following based on this object.

t=['a','b','c','d','e']
PYTHON APPLICATION PROGRAMMING [15CS664]

 Extracting full list without using any index, but only a slicing operator – >>>
print(t[:])

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 4 ~

['a', 'b', 'c', 'd', 'e']

 Extracting elements from 2ndposition –
>>> print(t[1:])

['b', 'c', 'd', 'e']

 Extracting first three elements –
>>> print(t[:3])

['a', 'b', 'c']

 Selecting some middle elements –
>>> print(t[2:4])

['c', 'd']

 Using negative indexing –
>>> print(t[:-2])

['a', 'b', 'c']

 Reversing a list using negative value for stride –
>>> print(t[::-1])

['e', 'd', 'c', 'b', 'a']

 Modifying (reassignment) only required set of values –
>>> t[1:3]=['p','q']
>>> print(t)

['a', 'p', 'q', 'd', 'e']

Thus, slicing can make many tasks simple.

3.1.5 List Methods

There are several built-in methods in list class for various purposes. Here, we will discuss some
of them.

 append(): This method is used to add a new element at the end of a list. >>>
ls=[1,2,3]
>>> ls.append(‘hi’)
>>> ls.append(10)
>>> print(ls)

[1, 2, 3, ‘hi’, 10]
PYTHON APPLICATION PROGRAMMING [15CS664]

extend(): This method takes a list as an argument and all the elements in this list are added
at the end of invoking list.

>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.extend(ls1)

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 5 ~

>>> print(ls2)
[5, 6, 1, 2, 3]

Now, in the above example, the list ls1 is unaltered.

sort(): This method is used to sort the contents of the list. By default, the function will sort
the items in ascending order.

>>> ls=[3,10,5, 16,-2]
>>> ls.sort()
>>> print(ls)

[-2, 3, 5, 10, 16]

When we want a list to be sorted in descending order, we need to set the argument as
shown –

>>> ls.sort(reverse=True)
>>> print(ls)
[16, 10, 5, 3, -2]

 reverse(): This method can be used to reverse the given list.
>>> ls=[4,3,1,6]
>>> ls.reverse()
>>> print(ls)

[6, 1, 3, 4]

count(): This method is used to count number of occurrences of a particular value within
list.

>>> ls=[1,2,5,2,1,3,2,10]
>>> ls.count(2)

3 #the item 2 has appeared 3 tiles in ls

 clear(): This method removes all the elements in the list and makes the list empty. >>>
ls=[1,2,3]
>>> ls.clear()
>>> print(ls)

[]
PYTHON APPLICATION PROGRAMMING [15CS664]

 insert(): Used to insert a value before a specified index of the list.
>>> ls=[3,5,10]
>>> ls.insert(1,"hi")
>>> print(ls)

[3, 'hi', 5, 10]

 index(): This method is used to get the index position of a particular value in the list. >>>
ls=[4, 2, 10, 5, 3, 2, 6]

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 6 ~

>>> ls.index(2)
1

Here, the number 2 is found at the index position 1. Note that, this function will give index of
only the first occurrence of a specified value. The same function can be used with two more
arguments start and end to specify a range within which the search should take place.

>>> ls=[15, 4, 2, 10, 5, 3, 2, 6]
>>> ls.index(2)

2
>>> ls.index(2,3,7)

6

If the value is not present in the list, it throws ValueError.
>>> ls=[15, 4, 2, 10, 5, 3, 2, 6]
>>> ls.index(53)

ValueError: 53 is not in list

Few important points about List Methods:
1. There is a difference between append() and extend() methods. The former adds the argument

as it is, whereas the latter enhances the existing list. To understand this, observe the following
example –

>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.append(ls1)
>>> print(ls2)

[5, 6, [1, 2, 3]]

Here, the argument ls1 for the append() function is treated as one item, and made as an inner
list to ls2. On the other hand, if we replace append() by extend() then the result would be –

>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.extend(ls1)
>>> print(ls2)

[5, 6, 1, 2, 3]
PYTHON APPLICATION PROGRAMMING [15CS664]

2. The sort() function can be applied only when the list contains elements of compatible types.
But, if a list is a mix non-compatible types like integers and string, the comparison cannot be
done. Hence, Python will throw TypeError. For example,

>>> ls=[34, 'hi', -5]
>>> ls.sort()
TypeError: '<' not supported between instances of 'str' and 'int'

Similarly, when a list contains integers and sub-list, it will be an error.

>>> ls=[34,[2,3],5]

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 7 ~

>>> ls.sort()
TypeError: '<' not supported between instances of 'list' and 'int'

Integers and floats are compatible and relational operations can be performed on them.
Hence, we can sort a list containing such items.

>>> ls=[3, 4.5, 2]
>>> ls.sort()
>>> print(ls)

[2, 3, 4.5]
3. The sort() function uses one important argument keys. When a list is containing tuples, it will be

useful. We will discuss tuples later in this Module.

4. Most of the list methods like append(), extend(), sort(), reverse() etc. modify the list object
internally and return None.

>>> ls=[2,3]
>>> ls1=ls.append(5)
>>> print(ls)

[2,3,5]
>>> print(ls1)

None

3.1.6 Deleting Elements
Elements can be deleted from a list in different ways. Python provides few built-in methods for
removing elements as given below –

 pop(): This method deletes the last element in the list, by default.
>>> ls=[3,6,-2,8,10]
>>> x=ls.pop() #10 is removed from list and stored in x >>> print(ls)

[3, 6, -2, 8]
>>> print(x)

10
PYTHON APPLICATION PROGRAMMING [15CS664]

When an element at a particular index position has to be deleted, then we can give that
position as argument to pop() function.

>>> t = ['a', 'b', 'c']
>>> x = t.pop(1) #item at index 1 is popped
>>> print(t)

['a', 'c']
>>> print(x)

b

remove(): When we don’t know the index, but know the value to be removed, then this
function can be used.

>>> ls=[5,8, -12,34,2]
>>> ls.remove(34)
>>> print(ls)

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 8 ~

[5, 8, -12, 2]

Note that, this function will remove only the first occurrence of the specified value, but not
all occurrences.

>>> ls=[5,8, -12, 34, 2, 6, 34]
>>> ls.remove(34)
>>> print(ls)

[5, 8, -12, 2, 6, 34]
Unlike pop() function, the remove() function will not return the value that has been deleted.

 del: This is an operator to be used when more than one item to be deleted at a time. Here
also, we will not get the items deleted.

>>> ls=[3,6,-2,8,1]
>>> del ls[2] #item at index 2 is deleted
>>> print(ls)

[3, 6, 8, 1]

>>> ls=[3,6,-2,8,1]
>>> del ls[1:4] #deleting all elements from index 1 to 3 >>>
print(ls)

[3, 1]

Deleting all odd indexed elements of a list –
>>> t=[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
>>> del t[1::2]
>>> print(t)

['a', 'c', 'e']
PYTHON APPLICATION PROGRAMMING [15CS664]

3.1.7 Lists and Functions
The utility functions like max(), min(), sum(), len() etc. can be used on lists. Hence most of the
operations will be easy without the usage of loops.

>>> ls=[3,12,5,26, 32,1,4]
>>> max(ls) # prints 32
>>> min(ls) # prints 1
>>> sum(ls) # prints 83
>>> len(ls) # prints 7

>>> avg=sum(ls)/len(ls)
>>> print(avg)

11.857142857142858

When we need to read the data from the user and to compute sum and average of those numbers,
we can write the code as below –

ls= list()
while (True):

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 9 ~

x= input('Enter a number: ')
if x== 'done':

break

x= float(x)
ls.append(x)

average = sum(ls) / len(ls)
print('Average:', average)

In the above program, we initially create an empty list. Then, we are taking an infinite while loop.
As every input from the keyboard will be in the form of a string, we need to convert x into float type
and then append it to a list. When the keyboard input is a string ‘done’, then the loop is going to
get terminated. After the loop, we will find the average of those numbers with the help of built-in
functions sum() and len().

3.1.8 Lists and Strings
Though both lists and strings are sequences, they are not same. In fact, a list of characters is not
same as string. To convert a string into a list, we use a method list() as below – >>> s="hello"

>>> ls=list(s)
>>> print(ls)

['h', 'e', 'l', 'l', 'o']

The method list() breaks a string into individual letters and constructs a list. If we want a list of
words from a sentence, we can use the following code –

PYTHON APPLICATION PROGRAMMING [15CS664]

>>> s="Hello how are you?"
>>> ls=s.split()
>>> print(ls)

['Hello', 'how', 'are', 'you?']

Note that, when no argument is provided, the split() function takes the delimiter as white space. If
we need a specific delimiter for splitting the lines, we can use as shown in following example –

>>> dt="20/03/2018"
>>> ls=dt.split('/')
>>> print(ls)

['20', '03', '2018']

There is a method join() which behaves opposite to split() function. It takes a list of strings as
argument, and joins all the strings into a single string based on the delimiter provided. For example
–

>>> ls=["Hello", "how", "are", "you"]
>>> d=' '
>>> d.join(ls)
'Hello how are you'

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 10 ~

Here, we have taken delimiter d as white space. Apart from space, anything can be taken as

delimiter. When we don’t need any delimiter, use empty string as delimiter.

3.1.9 Parsing Lines
In many situations, we would like to read a file and extract only the lines containing required
pattern. This is known as parsing. As an illustration, let us assume that there is a log file
containing details of email communication between employees of an organization. For all received
mails, the file contains lines as –

From stephen.marquard@uct.ac.za Fri Jan 5 09:14:16 2018
From georgek@uct.ac.za Sat Jan 6 06:12:51 2018
………………

Apart from such lines, the log file also contains mail-contents, to-whom the mail has been sent etc.
Now, if we are interested in extracting only the days of incoming mails, then we can go for parsing.
That is, we are interested in knowing on which of the days, the mails have been received. The
code would be –

fhand = open(‘logFile.txt’)
for line in fhand:

line = line.rstrip()
if not line.startswith('From '):

continue
words = line.split()
print(words[2])

PYTHON APPLICATION PROGRAMMING [15CS664]

Obviously, all received mails starts from the word From. Hence, we search for only such lines and
then split them into words. Observe that, the first word in the line would be From, second word
would be email-ID and the 3rd word would be day of a week. Hence, we will extract words[2]
which is 3rd word.

3.1.10 Objects and Values
Whenever we assign two variables with same value, the question arises – whether both the
variables are referring to same object, or to different objects. This is important aspect to know,
because in Python everything is a class object. There is nothing like elementary data type.

Consider a situation –
a= “hi”
b= “hi”

Now, the question is whether both a and b refer to the same string. There are two possible
states –

a hi a
hi

b hi b
In the first situation, a and b are two different objects, but containing same value. The

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 11 ~

modification in one object is nothing to do with the other. Whereas, in the second case, both a
and b are referring to the same object. That is, a is an alias name for b and vice versa. In other
words, these two are referring to same memory location.

To check whether two variables are referring to same object or not, we can use is operator.

>>> a= “hi”
>>> b= “hi”
>>> a is b #result is True
>>> a==b #result is True

When two variables are referring to same object, they are called as identical objects. When two
variables are referring to different objects, but contain a same value, they are known as
equivalent objects. For example,

>>> s1=input(“Enter a string:”) #assume you entered hello >>>
s2= input(“Enter a string:”) #assume you entered hello

>>> s1 is s2 #check s1 and s2 are identical False
>>> s1 == s2 #check s1 and s2 are equivalent True

Here s1 and s2 are equivalent, but not identical.
PYTHON APPLICATION PROGRAMMING [15CS664]

If two objects are identical, they are also equivalent, but if they are equivalent, they are not
necessarily identical.

String literals are interned by default. That is, when two string literals are created in the program
with a same value, they are going to refer same object. But, string variables read from the key-
board will not have this behavior, because their values are depending on the user’s choice.

Lists are not interned. Hence, we can see following result –

>>> ls1=[1,2,3]
>>> ls2=[1,2,3]
>>> ls1 is ls2 #output is False
>>> ls1 == ls2 #output is True

3.1.11 Aliasing
When an object is assigned to other using assignment operator, both of them will refer to same
object in the memory. The association of a variable with an object is called as reference.

>>> ls1=[1,2,3]
>>> ls2= ls1
>>> ls1 is ls2 #output is True

Now, ls2 is said to be reference of ls1. In other words, there are two references to the same
object in the memory.

An object with more than one reference has more than one name, hence we say that object is
aliased. If the aliased object is mutable, changes made in one alias will reflect the other.

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 12 ~

>>> ls2[1]= 34
>>> print(ls1) #output is [1, 34, 3]

Strings are safe in this regards, as they are immutable.

3.1.12 List Arguments
When a list is passed to a function as an argument, then function receives reference to this list.
Hence, if the list is modified within a function, the caller will get the modified version. Consider an
example –

def del_front(t):
del t[0]

ls = ['a', 'b', 'c']
del_front(ls)
print(ls) # output is ['b', 'c']

PYTHON APPLICATION PROGRAMMING [15CS664]

Here, the argument ls and the parameter t both are aliases to same object.

One should understand the operations that will modify the list and the operations that create a new
list. For example, the append() function modifies the list, whereas the + operator creates a new
list.

>>> t1 = [1, 2]
>>> t2 = t1.append(3)
>>> print(t1) #output is [1 2 3]
>>> print(t2) #prints None

>>> t3 = t1 + [5]
>>> print(t3) #output is [1 2 3 5]
>>> t2 is t3 #output is False

Here, after applying append() on t1 object, the t1 itself has been modified and t2 is not going to get
anything. But, when + operator is applied, t1 remains same but t3 will get the updated result.

The programmer should understand such differences when he/she creates a function intending to
modify a list. For example, the following function has no effect on the original list –

def test(t):
t=t[1:]

ls=[1,2,3]
test(ls)
print(ls) #prints [1, 2, 3]

One can write a return statement after slicing as below –

def test(t):

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 13 ~

return t[1:]

ls=[1,2,3]
ls1=test(ls)
print(ls1) #prints [2, 3]
print(ls) #prints [1, 2, 3]

In the above example also, the original list is not modified, because a return statement always
creates a new object and is assigned to LHS variable at the position of function call.

PYTHON APPLICATION PROGRAMMING [15CS664]

3.2 DICTIONARIES
A dictionary is a collection of unordered set of key:value pairs, with the requirement that keys are
unique in one dictionary. Unlike lists and strings where elements are accessed using index values
(which are integers), the values in dictionary are accessed using keys. A key in dictionary can be
any immutable type like strings, numbers and tuples. (The tuple can be made as a key for
dictionary, only if that tuple consist of string/number/ sub-tuples). As lists are mutable – that is, can
be modified using index assignments, slicing, or using methods like append(), extend() etc, they
cannot be a key for dictionary.

One can think of a dictionary as a mapping between set of indices (which are actually keys) and a
set of values. Each key maps to a value.

An empty dictionary can be created using two ways –
d= {}

OR
d=dict()

To add items to dictionary, we can use square brackets as –
>>> d={}
>>> d["Mango"]="Fruit"
>>> d["Banana"]="Fruit"
>>> d["Cucumber"]="Veg"
>>> print(d)
{'Mango': 'Fruit', 'Banana': 'Fruit', 'Cucumber': 'Veg'}

To initialize a dictionary at the time of creation itself, one can use the code like – >>>
tel_dir={'Tom': 3491, 'Jerry':8135}

>>> print(tel_dir)
{'Tom': 3491, 'Jerry': 8135}

>>> tel_dir['Donald']=4793
>>> print(tel_dir)

{'Tom': 3491, 'Jerry': 8135, 'Donald': 4793}

NOTE that the order of elements in dictionary is unpredictable. That is, in the above example,
don’t assume that 'Tom': 3491 is first item, 'Jerry': 8135 is second item etc. As dictionary
members are not indexed over integers, the order of elements inside it may vary. However, using

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 14 ~

a key, we can extract its associated value as shown below –

>>> print(tel_dir['Jerry'])
8135

Here, the key 'Jerry' maps with the value 8135, hence it doesn’t matter where exactly it is
inside the dictionary.

PYTHON APPLICATION PROGRAMMING [15CS664]

If a particular key is not there in the dictionary and if we try to access such key, then the KeyError
is generated.

>>> print(tel_dir['Mickey'])
KeyError: 'Mickey'

The len() function on dictionary object gives the number of key-value pairs in that object. >>>
print(tel_dir)

{'Tom': 3491, 'Jerry': 8135, 'Donald': 4793}
>>> len(tel_dir)

3

The in operator can be used to check whether any key (not value) appears in the dictionary
object.

>>> 'Mickey' in tel_dir #output is False
>>> 'Jerry' in tel_dir #output is True
>>> 3491 in tel_dir #output is False

We observe from above example that the value 3491 is associated with the key 'Tom' in
tel_dir. But, the in operator returns False.

The dictionary object has a method values() which will return a list of all the values associated
with keys within a dictionary. If we would like to check whether a particular value
exist in a dictionary, we can make use of it as shown below –

>>> 3491 in tel_dir.values() #output is True

The in operator behaves differently in case of lists and dictionaries as explained hereunder–
When in operator is used to search a value in a list, then linear search algorithm is used

internally. That is, each element in the list is checked one by one sequentially. This is
considered to be expensive in the view of total time taken to process. Because, if there are
1000 items in the list, and if the element in the list which we are search for is in the last
position (or if it does not exists), then before yielding result of search (True or False), we
would have done 1000 comparisons. In other words, linear search requires n number of
comparisons for the input size of n elements. Time complexity of the linear search
algorithm is O(n).

 The keys in dictionaries of Python are basically hashable elements. The concept of hashing
is applied to store (or maintain) the keys of dictionaries. Normally hashing techniques have
the time complexity as O(log n) for basic operations like insertion, deletion and searching.
Hence, the in operator applied on keys of dictionaries works better compared to that on

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 15 ~

lists. (Hashing technique is explained at the end of this Section, for curious readers)
PYTHON APPLICATION PROGRAMMING [15CS664]

3.2.1 Dictionary as a Set of Counters
Assume that we need to count the frequency of alphabets in a given string. There are different
methods to do it –

Create 26 variables to represent each alphabet. Traverse the given string and increment the
corresponding counter when an alphabet is found.

 Create a list with 26 elements (all are zero in the beginning) representing alphabets.
Traverse the given string and increment corresponding indexed position in the list when an
alphabet is found.

Create a dictionary with characters as keys and counters as values. When we find a
character for the first time, we add the item to dictionary. Next time onwards, we increment
the value of existing item.

Each of the above methods will perform same task, but the logic of implementation will be
different. Here, we will see the implementation using dictionary.

s=input("Enter a string:") #read a string
d=dict() #create empty dictionary

for ch in s: #traverse through string if ch not in d: #if
new character found

d[ch]=1 #initialize counter to 1
else: #otherwise, increment counter d[ch]+=1

print(d) #display the dictionary The sample output would be –

Enter a string: Hello World
{'H': 1, 'e': 1, 'l': 3, 'o': 2, ' ': 1, 'W': 1, 'r': 1, 'd': 1}

It can be observed from the output that, a dictionary is created here with characters as keys and
frequencies as values. Note that, here we have computed histogram of counters.

Dictionary in Python has a method called as get(), which takes key and a default value as two
arguments. If key is found in the dictionary, then the get() function returns corresponding value,
otherwise it returns default value. For example,

>>> tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253} >>>
print(tel_dir.get('Jerry',0))

8135
>>> print(tel_dir.get('Donald',0))

0
In the above example, when the get() function is taking 'Jerry' as argument, it returned
corresponding value, as 'Jerry' is found in tel_dir . Whereas, when get() is used with
'Donald' as key, the default value 0 (which is provided by us) is returned.

PYTHON APPLICATION PROGRAMMING [15CS664]

The function get() can be used effectively for calculating frequency of alphabets in a string. Here is
the modified version of the program –

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 16 ~

s=input("Enter a string:")
d=dict()

for ch in s:
d[ch]=d.get(ch,0)+1

print(d)

In the above program, for every character ch in a given string, we will try to retrieve a value. When
the ch is found in d, its value is retrieved, 1 is added to it, and restored. If ch is not found, 0 is
taken as default and then 1 is added to it.

3.2.2 Looping and Dictionaries
When a for-loop is applied on dictionaries, it will iterate over the keys of dictionary. If we want to
print key and values separately, we need to use the statements as shown – tel_dir={'Tom':

3491, 'Jerry':8135, 'Mickey':1253}
for k in tel_dir:

print(k, tel_dir[k])
Output would be –

Tom 3491
Jerry 8135
Mickey 1253

Note that, while accessing items from dictionary, the keys may not be in order. If we want to print
the keys in alphabetical order, then we need to make a list of the keys, and then sort that list. We
can do so using keys() method of dictionary and sort() method of lists. Consider the following code
–

tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}
ls=list(tel_dir.keys())
print("The list of keys:",ls)
ls.sort()
print("Dictionary elements in alphabetical order:")
for k in ls:

print(k, tel_dir[k])

The output would be –
The list of keys: ['Tom', 'Jerry', 'Mickey']
Dictionary elements in alphabetical order:
Jerry 8135
Mickey 1253
Tom 3491

PYTHON APPLICATION PROGRAMMING [15CS664]

Note: The key-value pair from dictionary can be together accessed with the help of a method
items() as shown –

>>> d={'Tom':3412, 'Jerry':6781, 'Mickey':1294}

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 17 ~

>>> for k,v in d.items():
print(k,v)

Output:
Tom 3412
Jerry 6781
Mickey 1294

The usage of comma-separated list k,v here is internally a tuple (another data structure in
Python, which will be discussed later).

3.2.3 Dictionaries and Files
A dictionary can be used to count the frequency of words in a file. Consider a file myfile.txt
consisting of following text –

hello, how are you?
I am doing fine.
How about you?

Now, we need to count the frequency of each of the word in this file. So, we need to take an outer
loop for iterating over entire file, and an inner loop for traversing each line in a file.
Then in every line, we count the occurrence of a word, as we did before for a character. The
program is given as below –

fname=input("Enter file name:")
try:

fhand=open(fname)
except:

print("File cannot be opened")
exit()

d=dict()

for line in fhand:
for word in line.split():

d[word]=d.get(word,0)+1

print(d)

The output of this program when the input file is myfile.txt would be –

Enter file name: myfile.txt
{'hello,': 1, 'how': 1, 'are': 1, 'you?': 2, 'I': 1, 'am': 1, 'doing':
1, 'fine.': 1, 'How': 1, 'about': 1}

PYTHON APPLICATION PROGRAMMING [15CS664]

Few points to be observed in the above output –
The punctuation marks like comma, full point, question mark etc. are also considered as a

part of word and stored in the dictionary. This means, when a particular word appears in a
file with and without punctuation mark, then there will be multiple entries of that word.

The word ‘how’ and ‘How’ are treated as separate words in the above example because of

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 18 ~

uppercase and lowercase letters.

While solving problems on text analysis, machine learning, data analysis etc. such kinds of
treatment of words lead to unexpected results. So, we need to be careful in parsing the text and
we should try to eliminate punctuation marks, ignoring the case etc. The procedure is discussed in
the next section.

3.2.4 Advanced Text Parsing
As discussed in the previous section, during text parsing, our aim is to eliminate punctuation marks
as a part of word. The string module of Python provides a list of all punctuation marks as shown –

>>> import string
>>> string.punctuation

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

The str class has a method maketrans() which returns a translation table usable for another

method translate(). Consider the following syntax to understand it more clearly –

line.translate(str.maketrans(fromstr, tostr, deletestr))

The above statement replaces the characters in fromstr with the character in the same position
in tostr and delete all characters that are in deletestr. The fromstr and tostr can be
empty strings and the deletestr parameter can be omitted.

Using these functions, we will re-write the program for finding frequency of words in a file.

import string

fname=input("Enter file name:")
try:

fhand=open(fname)

except:
print("File cannot be opened")
exit()

d=dict()
PYTHON APPLICATION PROGRAMMING [15CS664]

for line in fhand: line=line.rstrip()
line=line.translate(line.maketrans('','',string.punctuation))
line=line.lower()

for word in line.split():
d[word]=d.get(word,0)+1

print(d)

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 19 ~

Now, the output would be –
Enter file name:myfile.txt
{'hello': 1, 'how': 2, 'are': 1, 'you': 2, 'i': 1, 'am': 1, 'doing': 1,
'fine': 1, 'about': 1}

Comparing the output of this modified program with the previous one, we can make out that all the
punctuation marks are not considered for parsing and also the case of the alphabets are ignored.

3.2.5 Debugging
When we are working with big datasets (like file containing thousands of pages), it is difficult to
debug by printing and checking the data by hand. So, we can follow any of the following
procedures for easy debugging of the large datasets –

Scale down the input: If possible, reduce the size of the dataset. For example if the

program reads a text file, start with just first 10 lines or with the smallest example you can find.

You can either edit the files themselves, or modify the program so it reads only the first n lines. If

there is an error, you can reduce n to the smallest value that manifests the error, and then

increase it gradually as you correct the errors.

Check summaries and types: Instead of printing and checking the entire dataset, consider

printing summaries of the data: for example, the number of items in a dictionary or the total of a list

of numbers. A common cause of runtime errors is a value that is not the right type. For debugging

this kind of error, it is often enough to print the type of a value.

Write self-checks: Sometimes you can write code to check for errors automatically. For example,
if you are computing the average of a list of numbers, you could check that the result is not greater
than the largest element in the list or less than the smallest. This is called a sanity check
because it detects results that are “completely illogical”. Another kind of check compares the
results of two different computations to see if they are consistent. This is called a consistency
check.

Pretty print the output: Formatting debugging output can make it easier to spot an error.
PYTHON APPLICATION PROGRAMMING [15CS664]
THON APPLICATION PROGRAMMING [15CS664]

3.3 TUPLES
A tuple is a sequence of items, similar to lists. The values stored in the tuple can be of any type
and they are indexed using integers. Unlike lists, tuples are immutable. That is, values within
tuples cannot be modified/reassigned. Tuples are comparable and hashable objects. Hence, they
can be made as keys in dictionaries.

A tuple can be created in Python as a comma separated list of items – may or may not be
enclosed within parentheses.

>>> t='Mango', 'Banana', 'Apple' #without parentheses >>>

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 20 ~

print(t)
('Mango', 'Banana', 'Apple')

>>> t1=('Tom', 341, 'Jerry') #with parentheses >>> print(t1)
('Tom', 341, 'Jerry')

Observe that tuple values can be of mixed types.

If we would like to create a tuple with single value, then just a parenthesis will not suffice. For
example,

>>> x=(3) #trying to have a tuple with single item

>>> print(x)
3 #observe, no parenthesis found

>>> type(x)
<class 'int'> #not a tuple, it is integer!!

Thus, to have a tuple with single item, we must include a comma after the item. That is,

>>> t=3, #or use the statement t=(3,)
>>> type(t) #now this is a tuple
<class 'tuple'>

An empty tuple can be created either using a pair of parenthesis or using a function tuple() as
below –

>>> t1=()
>>> type(t1)

<class 'tuple'>

>>> t2=tuple()
>>> type(t2)

<class 'tuple'>

If we provide an argument of type sequence (a list, a string or tuple) to the method tuple(), then a
tuple with the elements in a given sequence will be created –

PYTHON APPLICATION PROGRAMMING [15CS664]

Create tuple using string:

>>> t=tuple('Hello')
>>> print(t)

('H', 'e', 'l', 'l', 'o')

Create tuple using list:

>>> t=tuple([3,[12,5],'Hi'])
>>> print(t)

(3, [12, 5], 'Hi')

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 21 ~

Create tuple using another tuple:

>>> t=('Mango', 34, 'hi')
>>> t1=tuple(t)
>>> print(t1)

('Mango', 34, 'hi')
>>> t is t1

True

Note that, in the above example, both t and t1 objects are referring to same memory location.
That is, t1 is a reference to t.
Elements in the tuple can be extracted using square-brackets with the help of indices. Similarly,
slicing also can be applied to extract required number of items from tuple.

>>> t=('Mango', 'Banana', 'Apple')
>>> print(t[1])

Banana
>>> print(t[1:])

('Banana', 'Apple')
>>> print(t[-1])

Apple

Modifying the value in a tuple generates error, because tuples are immutable – >>>
t[0]='Kiwi'
TypeError: 'tuple' object does not support item assignment

We wanted to replace ‘Mango’ by ‘Kiwi’, which did not work using assignment. But, a tuple can be
replaced with another tuple involving required modifications –

>>> t=('Kiwi',)+t[1:]
>>> print(t)

('Kiwi', 'Banana', 'Apple')
PYTHON APPLICATION PROGRAMMING [15CS664]

3.3.1 Comparing Tuples
Tuples can be compared using operators like >, <, >=, == etc. The comparison happens
lexicographically. For example, when we need to check equality among two tuple objects, the first
item in first tuple is compared with first item in second tuple. If they are same, 2nd

 items are
compared. The check continues till either a mismatch is found or items get over. Consider few
examples –

>>> (1,2,3)==(1,2,5)
False

>>> (3,4)==(3,4)
True

The meaning of < and > in tuples is not exactly less than and greater than, instead, it means
comes before and comes after. Hence in such cases, we will get results different from checking
equality (==).

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 22 ~

>>> (1,2,3)<(1,2,5)
True

>>> (3,4)<(5,2)
True

When we use relational operator on tuples containing non-comparable types, then TypeError will
be thrown.
>>> (1,'hi')<('hello','world')
TypeError: '<' not supported between instances of 'int' and 'str'

The sort() function internally works on similar pattern – it sorts primarily by first element, in case of
tie, it sorts on second element and so on. This pattern is known as DSU – Decorate a sequence
by building a list of tuples with one or more sort keys preceding the elements from the sequence,

 Sort the list of tuples using the Python built-in sort(), and
 Undecorate by extracting the sorted elements of the sequence.

Consider a program of sorting words in a sentence from longest to shortest, which illustrates DSU
property.

txt = 'Ram and Seeta went to forest with Lakshman'
words = txt.split()
t = list()
for word in words:

t.append((len(word), word))

print(‘The list is:’,t)
t.sort(reverse=True)
res = list()

PYTHON APPLICATION PROGRAMMING [15CS664]

for length, word in t:
res.append(word)

print(‘The sorted list:’,res)

The output would be –

The list is: [(3, 'Ram'), (3, 'and'), (5, 'Seeta'), (4, 'went'), (2,
'to'), (6, 'forest'), (4, 'with'), (8, 'Lakshman')]

The sorted list: ['Lakshman', 'forest', 'Seeta', 'went', 'with', 'and',
'Ram', 'to']

In the above program, we have split the sentence into a list of words. Then, a tuple containing
length of the word and the word itself are created and are appended to a list. Observe the output
of this list – it is a list of tuples. Then we are sorting this list in descending order. Now for sorting,
length of the word is considered, because it is a first element in the tuple. At the end, we extract
length and word in the list, and create another list containing only the words and print it.

3.3.2 Tuple Assignment
Tuple has a unique feature of having it at LHS of assignment operator. This allows us to assign

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 23 ~

values to multiple variables at a time.
>>> x,y=10,20
>>> print(x) #prints 10
>>> print(y) #prints 20

When we have list of items, they can be extracted and stored into multiple variables as below –

>>> ls=["hello", "world"]
>>> x,y=ls
>>> print(x) #prints hello
>>> print(y) #prints world

This code internally means that –
x= ls[0]
y= ls[1]

The best known example of assignment of tuples is swapping two values as below – >>>
a=10
>>> b=20
>>> a, b = b, a
>>> print(a, b) #prints 20 10

PYTHON APPLICATION PROGRAMMING [15CS664]

In the above example, the statement a, b = b, a is treated by Python as – LHS is a set of
variables, and RHS is set of expressions. The expressions in RHS are evaluated and assigned to
respective variables at LHS.

Giving more values than variables generates ValueError –
>>> a, b=10,20,5
ValueError: too many values to unpack (expected 2)

While doing assignment of multiple variables, the RHS can be any type of sequence like list,
string or tuple. Following example extracts user name and domain from an email ID.

>>> email='chetanahegde@ieee.org'
>>> usrName, domain = email.split('@')
>>> print(usrName) #prints chetanahegde >>> print(domain)
#prints ieee.org

3.3.3 Dictionaries and Tuples
Dictionaries have a method called items() that returns a list of tuples, where each tuple is a key-
value pair as shown below –

>>> d = {'a':10, 'b':1, 'c':22}
>>> t = list(d.items())
>>> print(t)

[('b', 1), ('a', 10), ('c', 22)]

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 24 ~

As dictionary may not display the contents in an order, we can use sort() on lists and then print in
required order as below –

>>> d = {'a':10, 'b':1, 'c':22}
>>> t = list(d.items())
>>> print(t)

[('b', 1), ('a', 10), ('c', 22)]
>>> t.sort()
>>> print(t)

[('a', 10), ('b', 1), ('c', 22)]

3.3.4 Multiple Assignment with Dictionaries
We can combine the method items(), tuple assignment and a for-loop to get a pattern for
traversing dictionary:

d={'Tom': 1292, 'Jerry': 3501, 'Donald': 8913}
for key, val in list(d.items()):

print(val,key)

The output would be –
1292 Tom
3501 Jerry
8913 Donald

PYTHON APPLICATION PROGRAMMING [15CS664]

This loop has two iteration variables because items() returns a list of tuples. And key, val is a
tuple assignment that successively iterates through each of the key-value pairs in the dictionary.
For each iteration through the loop, both key and value are advanced to the next key-value pair in
the dictionary in hash order.

Once we get a key-value pair, we can create a list of tuples and sort them –

d={'Tom': 9291, 'Jerry': 3501, 'Donald': 8913}
ls=list()
for key, val in d.items():

ls.append((val,key)) #observe inner parentheses

print("List of tuples:",ls)
ls.sort(reverse=True)
print("List of sorted tuples:",ls)

The output would be –
List of tuples: [(9291, 'Tom'), (3501, 'Jerry'), (8913, 'Donald')]
List of sorted tuples: [(9291, 'Tom'), (8913, 'Donald'), (3501,
'Jerry')]

In the above program, we are extracting key, val pair from the dictionary and appending
it to the list ls. While appending, we are putting inner parentheses to make sure that each pair is
treated as a tuple. Then, we are sorting the list in the descending order. The sorting would happen
based on the telephone number (val), but not on name (key), as first element in tuple is telephone

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 25 ~

number (val).

3.3.5 The Most Common Words
We will apply the knowledge gained about strings, tuple, list and dictionary till here to solve a
problem – write a program to find most commonly used words in a text file.

The logic of the program is –
 Open a file
 Take a loop to iterate through every line of a file.
Remove all punctuation marks and convert alphabets into lower case (Reason explained in

Section 3.2.4)
 Take a loop and iterate over every word in a line.
If the word is not there in dictionary, treat that word as a key, and initialize its value as 1. If

that word already there in dictionary, increment the value.
Once all the lines in a file are iterated, you will have a dictionary containing distinct words and

their frequency. Now, take a list and append each key-value (word frequency) pair into it.
Sort the list in descending order and display only 10 (or any number of) elements from the list

to get most frequent words.
PYTHON APPLICATION PROGRAMMING [15CS664]

import string
fhand = open('test.txt')
counts = dict()
for line in fhand:

line = line.translate(str.maketrans('', '',string.punctuation)) line
= line.lower()

for word in line.split():
if word not in counts:

counts[word] = 1
else:

counts[word] += 1

lst = list()
for key, val in list(counts.items()):

lst.append((val, key))

lst.sort(reverse=True)
for key, val in lst[:10]:

print(key, val)

Run the above program on any text file of your choice and observe the output.
3.3.6 Using Tuples as Keys in Dictionaries
As tuples and dictionaries are hashable, when we want a dictionary containing composite keys, we
will use tuples. For Example, we may need to create a telephone directory where name of a
person is Firstname-last name pair and value is the telephone number. Our job is to assign
telephone numbers to these keys. Consider the program to do this task –

NCET
NCET Introduction to Python Programming(22PLC15B/25B)

 Prepared by: Dr. Yogeesha H C, Associate Director(IQAC) and Prof & Head ~ 26 ~

names=(('Tom','Cat'),('Jerry','Mouse'), ('Donald', 'Duck'))
number=[3561, 4014, 9813]

telDir={}

for i in range(len(number)):
telDir[names[i]]=number[i]

for fn, ln in telDir:
print(fn, ln, telDir[fn,ln])

The output would be –
Tom Cat 3561
Jerry Mouse 4014
Donald Duck 9813

PYTHON APPLICATION PROGRAMMING [15CS664]

3.3.7 Summary on Sequences: Strings, Lists and Tuples
Till now, we have discussed different types of sequences viz. strings, lists and tuples. In many
situations these sequences can be used interchangeably. Still, due their difference in behavior and
ability, we may need to understand pros and cons of each of them and then to decide which one to
use in a program. Here are few key points –

1. Strings are more limited compared to other sequences like lists and Tuples. Because, the
elements in strings must be characters only. Moreover, strings are immutable. Hence, if we
need to modify the characters in a sequence, it is better to go for a list of characters than a
string.

2. As lists are mutable, they are most common compared to tuples. But, in some situations as
given below, tuples are preferable.

a. When we have a return statement from a function, it is better to use tuples rather
than lists.

b. When a dictionary key must be a sequence of elements, then we must use
immutable type like strings and tuples

c. When a sequence of elements is being passed to a function as arguments, usage of
tuples reduces unexpected behavior due to aliasing.

3. As tuples are immutable, the methods like sort() and reverse() cannot be applied on them.
But, Python provides built-in functions sorted() and reversed() which will take a sequence as

an argument and return a new sequence with modified results.

