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Question Bank
MODULE-1
DIFFERENTIAL CALCULUS
Questions CO M BL

1. Derive angle between radius vector and the tangent to the polar curve r=£(0). Co1 7 L2

Prove that with usual notations (i) p = rsin ¢ (ii) p1_2 = rl2+ %4 (:—;)2. o1 6 L2
3. Derive radius of curvature in Cartesian form. CO1 6 L2
4.  Derive radius of curvature in parametric form. Co1 7 L2
5. Derive radius of curvature in polar form. Co1 7 L2
6. Derive radius of curvature in Pedal form. CO1 6 L2
7.  Show that the curves ricos(nf)=a”and r"sin(n6)=b" are orthogonal. C01 6 L2
8.  Show that the curves r=a(1+sin0) and r=a(1—sin0)intersect each other orthogonally. =~ CO1 6 L2
9.  Show that curvesr” = a” cos(n6) and r™ = b" sin(nB) cut each other orthogonally. C01 6 L2
10. Find the angle of intersection between the following curvesr = alogBandr = @. col1 7 L2
11.  Find the angle of intersection between the curvesr = 1+:ose and r = 1_:’056 . C01 6 L2
12. Find the angle of intersection between the curvesr = 4 sec?(8/2) and C01 6 L2

r = 9 cosec?(0/ 2).
13. Find the angle of intersection between the curvesr = sin8 + cos 8 and r = 2 sin 0. C01 6 L2
14. Find the pedal equation of the curve r = a(1 + cos 8). CO1 6 L2
15. Find the pedal equation of the curveé =1+ ecosb. cor 7 L2
16. Find the pedal equation of the curve rm=am(cosm6+sinm®). CO1 6 L2
17. Find radius of curvature at (a,2a) of the parabola y2=4ax. C01 6 L2
18.  Find radius of curvature at the point (%a ,32—a) for the curve x3 + y3 = 3axy. col1 7 L2
19. Show that radius of curvature at the point (a, 0) for the curve y? = @ is 2 cor 7 L2



20. Show that radius of curvature at any point on the cycloid x = a(6 + sin8),

y = a(1 — cos0) is 4a.cos (g) .
21. Find pat 6 = E for the curve x /3 + y/3 = a”/3. where x = a cos30, y = asin?6.
22. Show that p atany point of the cardiod r = a(1 — cos 0) varies as .
23. Show that the radius of curvature of a curve r"=ancosn® varies inversely as 1.
24. Showthat p at (r, 0)on the curve r? = a?sec20 is proportional to r3.

2

25. For the cardioid r = a(1l + cos 0), show that % is constant.
MODULE-2

SERIES EXPANSION AND MULTI VARIABLE CALCULUS

QUESTIONS
Expand loge x in powers of (x — 1) and hence evaluate (1. 1) correct to four
decimal places using Taylor’s series Expansion.

Find the Taylor’s series expansion of f(x) = log cosx at x = g up to fourth degree

term.

4
Expand sinx in powers of (x — g) up to the term containing(x — g) . Hence find

the value of sin 91° correct to 4 decimal places.

1

Expand tan™" x in powers of (x — 1) up to the term containing fourth degree.

Using Maclaurin’s series, expand y = /(1 + sin 2x) in powers of x up to the term
containing x*.

Find the Maclaurin’s series of log (1 + x). Hence deduce that

3 5
log /%=x+%+%+ .........

. 2 4
Prove that eS™* =1 +x+%— 3%—---.....

. x?  x3 x*
Prove thatlog (1 +sSin X) =X - — + — — + —----m-mmmmmmeme-
2 6 12
1
) bm o XXy (M)x
Evaluate (i) .27 T 1logx (i) }CILI(I)

Co1

Co1

Co1

Co1
Co1
Co1

co

co1l

co1l

co1

co1l

co1l

co1

co1

co1

co1l

N NN

L2

L2

L2

L2
L2
L2

BL

L2

L2

L2

L2

L2

L2

L3

L3

L2



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

1

-\ lim tanx—x tan x)xz
Evaluate (i),.27% Py~ (i) hm(

1
Evaluatelim inx-e

x—0

x(a+b cosx)—csinx _

Find the values of a, b, ¢ such that lirré - =1
xX—
dz 0z 0z 0z
If (x +y)z = x? + y?, prove that (——5) = 4(1 —&—5)
— 2 -1 (¥} _ 2 -1 (X 0%u
If u=x*tan (X) y~ tan (y), show that axay 3y 0%
If z = e®*b¥f(ax — by), prove that b + — = 2abz
If u = log(x® +y3 + z3 — 3xyz), prove that (1) — + — + Z—lzl = ryis and(ii)

a a8  09)\> -9
(— +—=+ —) u=—-=
ox dy 0z (x+y+z)2

If f=x?+y?+2z% and x = e?', y =e?'cos3t, z = e?'sin3t,find g—i

—u \%

If z=f(x,y)and x=¢e"+e7", y=e"—e

0z 0z 0z 0z
prove that o Xm Yoy

IfU:f(X—y, y—2z, Z—X), thenprovethat—+ +E:0

If u=x%-2y? v=2x?-—y? wherex =rcos® andy = rsin8,

a(u,v)

2
2y 6r“sin20.

then show that

a(u,v,w)

0(xy,z)

3

Ifu=x+3y? —z3, v=4x%yz, w=2z2—xy, then find

at (1, -1, 0).
If x = rsinBcos®, y = rsinBsin@, z= rcosO, then show that

0(xy,z)

R
3000.0) — r<sinb.

Discuss the maxima and minima of the function
flo,y) =x3y*(1—x—y).
Examine the function f(x,y) = sin x + sin y + sin (x + y) for extreme values.

A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimension of

the box requiring least material for its construction.
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MODULE 3

Ordinary Differential Equations Of First Order

Questions CO  Marks BL
1. Solve ¥_Z_yxix2 co2 07 L2
dx X
2. Solve % + ycotx = 4x cosecx ify = 0when x = g . CO2 07 L2
3. Solve x% +y = x3y°. co2 07 L2
4. Solve xy (1 +xy?) % = 1. co2 07 L2
5. Solve [y(l + i) + cos y] dx + [x +logx — xsiny] dy = 0. co2 07 L2
6.  Solve (2xy +y —tany) dx + (x* —x tan?y + sec?®y) dy = 0. co2 07 L2
7. Solve y(2x —y+ 1) dx + x(3x — 4y + 3) dy = 0. co2 07 L2
8 Solve (y logy) dx + (x —logy) dy = 0. co2 07 L2
3 2 2 4 —
9 Solve (xy°+ y)dx+2x*y*+x+y*)dy=0. co2 07 L2
10.  Show that the family of parabolas y? = 4a(x + a) is self orthogonal. coz2 07 L3
11. Show that the family of conics a:; + bix = 1, Where A is a parameteris ~ CO2 07 L3
self orthogonal.
12.  Find the orthogonal trajectories of the family of curves Ccoz 07 L3
r" = a" sinnf, where a is the parameter.
13.  Find the orthogonal trajectories of the family of cardiods CO2 07 L3
r = a(1-—cos0),where a is the parameter.
14 If the temperature of the air 30°C and a metal ball cools from co? 07 L3
" 100°C to 70°C in 15 minutes, find how long will it take for the metal ball to
reach a temperature of 40°C.
15 A body originally at 80°C cools down to 60°C in 20 minutes. If the air cO?2 07 L3
© temperature is 40°C , what will be the temperature of the body after 40
minutes?
16.  Water at temperature 10°C takes 5 minutes to warm up to 20°C in a room co2 07 L3

temperature at 40°C.Find the temperature after 20 minutes.



17 A bottle of mineral water at a room temperature of 72°F is kept in a
refrigerator where the temperature is 44°F . After half an hour, water cooled
to 61°F. How long will it take to cool to 50°F?

18.  Obtain general and singular solution of & — & =X_Y

dx dy y x
- - - dy 2 2 2 dy

19.  Obtain general and singular solution of x y(&) - +y) S t+xy=0.

20.  Obtain general and singular solution of p?+ 2py cot x = y2.

21.  Obtain general and singular solution of p(p +y) = X(X +y).

22.  Find the general solution of the equation (px —y) (py + x) = 2p by
reducing in to Clairaut’s form by taking the substitutions X = x2,Y = y?2.

23.  Find the general solution of the equation (p — 1) e3* + p3e?Y = 0 by
reducing in to Clairaut’s form by taking the substitutions u = e*,v = e7.

24.  Find the general solution of the equation (px —y) (py + x) = a%p by
reducing in to Clairaut’s form by taking the substitutions X = x2,Y = y?2.
Find the general solution of the equation

25. _ . s 2 , L
(siny cos*x) = (cos“y p*) + (sinx cosx cosy p) by reducing in to
Clairaut’s form by taking the substitutions u = siny,v = sinx.

Module 4
INTEGRAL CALCULUS

Questions

1. Evaluate fol fxxz(x2 + 3y + 2) dy dx

2.Evaluate f01 foﬁxye"2 dy dx

asin® 3

3. Evaluate f;/zf r3sin? 6 dr do

0

4. Evaluate fol fxﬁ(x2 + y?) dy dx

5. Evaluate f_ll fOZ fXX_JrZZ(X +y + z)dx dy dz

6. Evaluate f_cc f_bb f_aa(x2 +y?% + z%)dz dy dx
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7. Evaluate fologz Jy 1, X*HI08Y ox+y+2 4y dy dz

a?
—r2
asin @ f

8. Evaluatef N , ¢ rdzdrde

9. Evaluate [[ xy(x + y)dy dx taken over the area between y = x* and y = x

10. Evaluate ff, xy dxdy Where A is the domain bounded by ordinate

x = 2a and the curve x? = 4ay

11.Evaluate ffR x?y dxdy where R is the region bounded by the lines,y = x

Xx+y=2andy=0
12.Evaluate [[y dxdy over the region by the first quadrant of the ellipse

2 2
=+ =1,

a2 b2

2vax

13.Evaluate f f dy dx by changing the order of integration.

14.Evaluate [ [~ ey—y dy dx by changing the order of integration
15. Evaluate [’ f;%;zy by changing the order of integration.

o —x2 - - -
16. Evaluate [, foxxe “/vdy dx by changing the order of integration.

17.Evaluate [° [ e~®*+¥*) dx dy by changing into polar coordinates.

Hence show that [~ e~ dx = ‘/Z—E :

18. Evaluate f , Voo _x —— dy dx by changing into polar coordinates.

X2+

19. Evaluate [ ' [ @yt X2 +y? dxdy by changing to polar coordinates.

r'(m)I'(n)
I'(m+n)

20.Prove that f(m,n) =

21. Prove that T'(1/,) = v/ and show that [~ e™" dx :g.

22.Evaluate i) fn/Z\/cotH do i) fon/Z\/tane de

23. Provethatf m 4\/58(1’5)'

x _nr(t/y)

Viext o ar(3/,)

24.Prove that [ 01

= T

> = Z de
25. Prove that [2+/sin® d6 * fozm
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MODULE-5

LINEAR ALGEBRA

10.

11.

12.

13.

Questions
4 0 21
; 12 1 3 4 o
Find the rank of the matrix 5 3 47 by reducing it to echelon form.
2 3 14
0 1 -3 -1
. |1 0 1 1 o
Find the rank of the matrix 3 1 0 2 by reducing it to echelon form.
11 -2 0
2 3 -1 -1
. 11 -1 -2 —4 o
Find the rank of the matrix 3 1 3 _o by reducing it to echelon form.
6 3 0 -7
1 2 1 0
Find the rank of the matrix |-2 4 3 0| by reducing into echelon form.
1 0 2 8

Test the consistency and Solvex +y+z=6,x —y+2z=5,3x+y+z=8.

Test the consistency and Solve x + 2y + 3z =14, 4x + 5y + 7z = 35,
3x + 3y +4z = 21.

Test the consistency and Solve
x—4y+7z=14, 3x+8y—2z=13,7x — 8y + 262 =5

Investigate the values of A and p so that the equations
2x+3y+5z=9, 7x+3y—2z=8, 2x + 3y + Az = 1 may have
a) Unique solution b) Infinite solution c) No solution

Solve the system of linear equations 2x; + 4x, + X3 = 3, 3xq + 2X, — 2X3 = —2,
X1 — X5 + X3 = 6 using Gauss elimination method.

Find the Solution of the system of linear equations using Gauss elimination method
2Xx—y+32=9, x+y+z2=6, x—y+z=2.

Find the Solution of the system of linear equations using Gauss elimination method:
X+4y—z =-5, x+y—62=—-12, 3x—y—z =4

Apply Gauss-Jordan method to solve the equation

2x1 +x, +3x3=1,4x; +4x, + 7x3 =1 ,2x; + 5x, + 9x3 = 3.

Apply Gauss-Jordan method to solve the system of equation
2x+5y+7z=52,2x+y—z=0,x+y+z=09.
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14.

15.
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20.
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22.
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24,

25.

Apply Gauss-Jordan method to solve the system of equation
10x -7y +3z+5u=6,-6x+8y—z—4u=5,3x+y+4z+11lu =2,
5x -9y —-2z+4u=7

Find the Solution of system of linear equation using Gauss—Seidel method
20x+y—2z =17, 3x+ 20y —z=-18, 2x— 3y + 20z = 25.

Solve the equations 9x —y + 2z =9, x+ 10y — 2z =15, —2x+2y+13z=17
using Gauss—Seidel method by taking (1, 1, 1) as initial approximate solution .

5 -1 0]rx 9
Solve the equations | —1 5 -1 lyl= 4 | using Gauss—Seidel method.

0 -1 511z -6
8 -6 2
Find the eigen value and the eigen vectors of the matrix|—6 7 -4
2 -4 3
6 -2 2
Find the eigen values and the eigen vectors of the matrix| —2 3 -1
2 -1 3
-3 =7 =5
Find the eigen values and the eigen vectors of the matrix | 2 4 3
1 2 2
-2 2 =3
Find the Eigen values and eigen vectors of the matrix| 2 1 -6
-1 -2 0

Find the Largest Eigen value and the corresponding Eigen vector of the matrix

1 -3 2
A=14 4 —1] by the power method.Perform five iteration. Take [1, 0, 0]" as
6 3 5

initial approximation.

Find the largest eigen value and the corresponding eigen vector of the matrix

2 -1 0
-1 2 — 1| by using power method.
0 -1 2

Find the largest eigen value and the corresponding eigen vector of the matrix
4 1 -1
[ 2 3 — 1‘ using the power methodby taking the initial approximation to the

-2 1 5
eigen vector as [1, 0.8, - 0.8]". Perform five iterations.

Determine the largest (dominant) eigen value and the corresponding eigen vector of

1 6 1

the matrix [ 1 2 0] using the power method. Taking the initial
0 0 2

Eigenvector as [1,0,0]’
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