NAGARJUNA COLLEGE OF ENGINERING AND TECHNOLOGY

NAGARJUNACOLLEGEOFENGINEERINGANDTECHNOLOGY

(Anautonomous institutionunderVTU)

DepartmentOfMathematics
First Semester
(23MATS11/23MATE11/23MATC11)

Question Bank

Academic Year 2023-24

MODULE-1

DIFFERENTIAL CALCULUS

	Questions	CO	M	BL
1.	Derive angle between radius vector and the tangent to the polar curve $r=f(\theta)$.	CO1	7	L2
2.	Prove that with usual notations (i) $p = r\sin \phi$ (ii) $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.	CO1	6	L2
3.	Derive radius of curvature in Cartesian form.	CO1	6	L2
4.	Derive radius of curvature in parametric form.	CO1	7	L2
5.	Derive radius of curvature in polar form.	CO1	7	L2
6.	Derive radius of curvature in Pedal form.	CO1	6	L2
7.	Show that the curves $r^n\cos(n\theta)=a^n$ and $r^n\sin(n\theta)=b^n$ are orthogonal.	CO1	6	L2
8.	Show that the curves $r=a(1+\sin\theta)$ and $r=a(1-\sin\theta)$ intersect each other orthogonally.	CO1	6	L2
9.	Show that curves $r^n = a^n \cos(n\theta)$ and $r^n = b^n \sin(n\theta)$ cut each other orthogonally.	CO1	6	L2
10.	Find the angle of intersection between the following curves $r = a \log \theta$ and $r = \frac{a}{\log \theta}$.	CO1	7	L2
11.	Find the angle of intersection between the curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 - \cos \theta}$.	CO1	6	L2
12.	Find the angle of intersection between the curves $r = 4 sec^2(\theta/2)$ and	CO1	6	L2
	$r = 9 \csc^2(\theta/2).$			
13.	Find the angle of intersection between the curves $r = \sin \theta + \cos \theta$ and $r = 2 \sin \theta$.	CO1	6	L2
14.	Find the pedal equation of the curve $r = a(1 + \cos \theta)$.	CO1	6	L2
15.	Find the pedal equation of the curve $\frac{l}{r} = 1 + e \cos \theta$.	CO1	7	L2
16.	Find the pedal equation of the curve $r^m=a^m(cosm\theta+sinm\theta)$.	CO1	6	L2
17.	Find radius of curvature at (a,2a) of the parabola $y^2=4ax$.	CO1	6	L2
18.	Find radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ for the curve $x^3 + y^3 = 3axy$.	CO1	7	L2
19.	Show that radius of curvature at the point (a, 0) for the curve $y^2 = \frac{a^2(a-x)}{x}$ is $\frac{a}{2}$.	CO1	7	L2

20. Show that radius of curvature at any point on the cycloid
$$x = a(\theta + \sin \theta)$$
, CO1 7 L2 $y = a(1 - \cos \theta)$ is $4a \cdot \cos \left(\frac{\theta}{2}\right)$.

21. Find
$$\rho$$
 at $\theta=\frac{\pi}{4}$ for the curve $x^{2/3}+y^{2/3}=a^{2/3}$. where $x=a\cos^3\theta$, $y=a\sin^3\theta$.

22. Show that
$$\rho$$
 at any point of the cardiod $r = a(1 - \cos \theta)$ varies as \sqrt{r} .

23. Show that the radius of curvature of a curve
$$r^n=a^n\cos \theta$$
 varies inversely as r^{n-1} .

24. Show that
$$\rho$$
 at (r, θ) on the curve $r^2 = a^2 \sec 2\theta$ is proportional to r^3 .

25. For the cardioid
$$r = a(1 + \cos \theta)$$
, show that $\frac{\rho^2}{r}$ is constant.

MODULE-2

SERIES EXPANSION AND MULTI VARIABLE CALCULUS

	QUESTIONS	со	M	BL
1	Expand $\log_e x$ in powers of $(x-1)$ and hence evaluate (1.1) correct to four	CO1	6	L2
	decimal places using Taylor's series Expansion.			
2	Find the Taylor's series expansion of $f(x) = \log \cos x$ at $x = \frac{\pi}{3}$ up to fourth degree	CO1	6	L2
	term.			
3	Expand $\sin x$ in powers of $\left(x - \frac{\pi}{2}\right)$ up to the term containing $\left(x - \frac{\pi}{2}\right)^4$. Hence find	CO1	6	L2
	the value of $\sin 91^0$ correct to 4 decimal places.			
4	Expand $\tan^{-1} x$ in powers of $(x-1)$ up to the term containing fourth degree.	CO1	7	L2
5	Using Maclaurin's series, expand $y = \sqrt{(1 + \sin 2x)}$ in powers of x up to the term	CO1	6	L2
6	containing x^4 . Find the Maclaurin's series of $\log (1 + x)$. Hence deduce that	CO1	7	L2
J	$\log \sqrt{\frac{1+x}{1-x}} = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$	601	,	
7	Prove that $e^{\sin x} = 1 + x + \frac{x^2}{2!} - 3\frac{x^4}{4!} - \cdots$	CO1	7	L3
8	Prove that $\log (1 + \sin x) = x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^4}{12} + \dots$	CO1	7	L3
9	Evaluate (i) $\lim_{x \to 1} \frac{x^x - x}{x - 1 - \log x}$ (ii) $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$	CO1	7	L2

Evaluate (i)
$$\lim_{x\to 0} \frac{\tan x - x}{x^2 \tan x}$$
 (ii) $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$ CO1 7 L2

Evaluate
$$\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$$

Find the values of a, b, c such that
$$\lim_{x\to 0} \frac{x(a+b\cos x)-c\sin x}{x^5} = 1$$

If
$$(x + y)z = x^2 + y^2$$
, prove that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$

If
$$u = x^2 \tan^{-1} \left(\frac{y}{x} \right) - y^2 \tan^{-1} \left(\frac{x}{y} \right)$$
, show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

If
$$z = e^{ax + by} f(ax - by)$$
, prove that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$

If
$$u = log(x^3 + y^3 + z^3 - 3xyz)$$
, prove that (i) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x+y+z}$ and (ii) CO1 7 L2
$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$$

If
$$f = x^2 + y^2 + z^2$$
 and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$, find $\frac{df}{dt}$

18 If
$$z = f(x,y)$$
 and $x = e^u + e^{-v}$, $y = e^{-u} - e^v$ CO1 7 L2 prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$

If
$$u = f(x - y, y - z, z - x)$$
, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$

20 If
$$u=x^2-2y^2$$
, $v=2x^2-y^2$, where $x=rcos\theta$ and $y=rsin\theta$, CO1 7 L2 then show that $\frac{\partial(u,v)}{\partial(x,y)}=6r^2sin2\theta$.

21 If
$$u=x+3y^2-z^3$$
, $v=4x^2yz$, $w=2z^2-xy$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ CO1 7 L2 at $(1,-1,0)$.

If
$$x=rsin\theta cos\emptyset$$
, $y=rsin\theta sin\emptyset$, $z=rcos\theta$, then show that
$$\frac{\partial (x,y,z)}{\partial (r,\theta,\emptyset)}=r^2sin\theta.$$

Discuss the maxima and minima of the function
$$f(x,y) = x^3 y^2 (1-x-y).$$

Examine the function
$$f(x,y) = \sin x + \sin y + \sin (x+y)$$
 for extreme values. CO1 7 L3

A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimension of CO1 7 L3 the box requiring least material for its construction.

MODULE 3 Ordinary Differential Equations Of First Order

	Questions	CO	Marks	BL
1.	Solve $\frac{dy}{dx} - \frac{2y}{x} = x + x^2$.	CO2	07	L2
2.	Solve $\frac{dy}{dx} + y \cot x = 4x \csc x$ if $y = 0$ when $x = \frac{\pi}{2}$.	CO2	07	L2
3.	Solve $x \frac{dy}{dx} + y = x^3 y^6$.	CO2	07	L2
4.	Solve xy $(1 + x y^2) \frac{dy}{dx} = 1$.	CO2	07	L2
5.	Solve $\left[y\left(1+\frac{1}{x}\right)+\cos y\right] dx + \left[x+\log x - x\sin y\right] dy = 0.$	CO2	07	L2
6.	Solve $(2xy + y - \tan y) dx + (x^2 - x \tan^2 y + \sec^2 y) dy = 0$.	CO2	07	L2
7.	Solve $y(2x - y + 1) dx + x(3x - 4y + 3) dy = 0$.	CO2	07	L2
8.	Solve $(y \log y) dx + (x - \log y) dy = 0$.	CO2	07	L2
9.	Solve $(xy^3 + y) dx + 2 (x^2 y^2 + x + y^4) dy = 0$.	CO2	07	L2
10.	Show that the family of parabolas $y^2 = 4a(x + a)$ is self orthogonal.	CO2	07	L3
11.	Show that the family of conics $\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1$, Where λ is a parameter is self orthogonal.	CO2	07	L3
12.	Find the orthogonal trajectories of the family of curves $r^n=a^n\sin n\theta$, where a is the parameter.	CO2	07	L3
13.	Find the orthogonal trajectories of the family of cardiods $r=a(1-\cos\theta)$, where a is the parameter.	CO2	07	L3
14.	If the temperature of the air 30°C and a metal ball cools from 100°C to 70°C in 15 minutes, find how long will it take for the metal ball to reach a temperature of 40°C.	CO2	07	L3
15.	A body originally at 80° C cools down to 60° C in 20 minutes. If the air temperature is 40° C, what will be the temperature of the body after 40 minutes?	CO2	07	L3
16.	Water at temperature 10°C takes 5 minutes to warm up to 20°C in a room temperature at 40°C. Find the temperature after 20 minutes.	CO2	07	L3

17. CO₂ 07 L3 A bottle of mineral water at a room temperature of 72°F is kept in a refrigerator where the temperature is 44°F. After half an hour, water cooled to 61°F. How long will it take to cool to 50°F? Obtain general and singular solution of $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$. 18. CO₂ 06 L2 Obtain general and singular solution of $x y \left(\frac{dy}{dx}\right)^2 - (x^2 + y^2) \frac{dy}{dx} + xy = 0$. 19. CO2 06 L2 Obtain general and singular solution of $p^2 + 2py \cot x = y^2$. 20. CO2 06 L2 21. Obtain general and singular solution of p(p + y) = x(x + y). L2 CO₂ 06 22. Find the general solution of the equation (px - y)(py + x) = 2p by L2 CO₂ 06 reducing in to Clairaut's form by taking the substitutions $X = x^2$, $Y = y^2$. Find the general solution of the equation $(p-1) e^{3x} + p^3 e^{2y} = 0$ by 23. CO2 06 L2 reducing in to Clairaut's form by taking the substitutions $u = e^x$, $v = e^y$. Find the general solution of the equation $(px - y)(py + x) = a^2p$ by 24. CO₂ 06 L2 reducing in to Clairaut's form by taking the substitutions $X = x^2$, $Y = y^2$. Find the general solution of the equation 25. CO2 06 L2 $(\sin y \cos^2 x) = (\cos^2 y p^2) + (\sin x \cos x \cos y p)$ by reducing in to

Module 4

INTEGRAL CALCULUS

Questions	CO's	M	BL
1. Evaluate $\int_0^1 \int_{x^2}^x (x^2 + 3y + 2) dy dx$	CO3	6	L2
2. Evaluate $\int_0^1 \int_0^{\sqrt{x}} xy e^{x^2} dy dx$	CO3	6	L2
3. Evaluate $\int_0^{\pi/2} \int_0^{a \sin \theta} r^3 \sin^2 \theta \ dr d\theta$	CO3	6	L2
4. Evaluate $\int_0^1 \int_{x}^{\sqrt{x}} (x^2 + y^2) dy dx$	CO3	6	L2
5. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$	CO3	6	L2
6. Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$	CO3	6	L2

Clairaut's form by taking the substitutions $u = \sin y$, $v = \sin x$.

7. Evaluate
$$\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dx dy dz$$
 CO3 7 L2 8. Evaluate $\int_0^{\pi} \int_0^{a \sin \theta} \frac{a^2 - r^2}{a} r dz dr d\theta$ CO3 6 L2 9. Evaluate $\iint_A xy (x + y) dy dx$ taken over the area between $y = x^2$ and $y = x$ CO3 7 L2 10. Evaluate $\iint_A xy dx dy$ Where A is the domain bounded by ordinate CO3 7 L2 $x = 2a$ and the curve $x^2 = 4ay$ 11. Evaluate $\iint_R x^2 y dx dy$ where R is the region bounded by the lines, $y = x$, CO3 7 L2 $x + y = 2$ and $y = 0$ 12. Evaluate $\iint_Y y dx dy$ over the region by the first quadrant of the ellipse CO3 7 L2 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 13. Evaluate $\int_0^{4a} \int_0^{2\sqrt{ax}} dy dx$ by changing the order of integration. CO3 7 L3 15. Evaluate $\int_0^{\infty} \int_0^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration. CO3 7 L3 16. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing the order of integration. CO3 7 L3 17. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing the order of integration. CO3 7 L3 17. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 18. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing into polar coordinates. CO3 7 L3 19. Evaluate $\int_0^{\infty} \int_0^{\infty} x e^{-x^2} / y dy dx$ by changing to polar coordinates. CO3 7 L3 19. Eval

22. Evaluate i) $\int_0^{\pi/2} \sqrt{\cot \theta} \ d\theta \ ii$) $\int_0^{\pi/2} \sqrt{\tan \theta} \ d\theta$

23. Prove that $\int_0^1 \frac{dx}{\sqrt{1+x^4}} = \frac{1}{4\sqrt{2}} \beta \left(\frac{1}{4}, \frac{1}{2}\right)$.

25. Prove that $\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta * \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$.

24.Prove that $\int_0^1 \frac{dx}{\sqrt{1-x^4}} = \frac{\pi}{4} \frac{\Gamma(1/4)}{\Gamma(3/4)}$.

L2

L2

L2

L2

CO3 6

CO3 7

CO3 7

CO3 7

MODULE-5

LINEAR ALGEBRA

LINEAR ALGEBRA						
	Questions	CO	M	BL		
1.	Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ by reducing it to echelon form.	CO4	6	L2		
2.	Find the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$ by reducing it to echelon form.	CO4	6	L2		
3.	Find the rank of the matrix $\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ by reducing it to echelon form.	CO4	6	L2		
4.	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & 8 \end{bmatrix}$ by reducing into echelon form.	CO4	6	L2		
5.	Test the consistency and Solve $x + y + z = 6$, $x - y + 2z = 5$, $3x + y + z = 8$.	CO4	6	L2		
6.	Test the consistency and Solve $x+2y+3z=14$, $4x+5y+7z=35$, $3x+3y+4z=21$.	CO4	6	L2		
7.	Test the consistency and Solve $x-4y+7z=14$, $3x+8y-2z=13$, $7x-8y+26z=5$	CO4	6	L2		
8.	Investigate the values of λ and μ so that the equations $2x+3y+5z=9$, $7x+3y-2z=8$, $2x+3y+\lambda z=\mu$ may have a) Unique solution b) Infinite solution c) No solution	CO4	7	L2		
9.	Solve the system of linear equations $2x_1 + 4x_2 + x_3 = 3$, $3x_1 + 2x_2 - 2x_3 = -2$, $x_1 - x_2 + x_3 = 6$ using Gauss elimination method.	CO4	6	L2		
10.	Find the Solution of the system of linear equations using Gauss elimination method $2x - y + 3z = 9$, $x + y + z = 6$, $x - y + z = 2$.	CO4	6	L2		
11.	Find the Solution of the system of linear equations using Gauss elimination method: $x + 4y - z = -5$, $x + y - 6z = -12$, $3x - y - z = 4$.	CO4	6	L2		
12.	Apply Gauss-Jordan method to solve the equation $2x_1 + x_2 + 3x_3 = 1, 4x_1 + 4x_2 + 7x_3 = 1, 2x_1 + 5x_2 + 9x_3 = 3.$	CO4	6	L2		

13. Apply Gauss-Jordan method to solve the system of equation

2x + 5y + 7z = 52, 2x + y - z = 0, x + y + z = 9.

CO4

L2

14. Apply Gauss-Jordan method to solve the system of equation	CO4	7	L2
10x - 7y + 3z + 5u = 6, $-6x + 8y - z - 4u = 5$, $3x + y + 4z + 11u = 2$,			
5x - 9y - 2z + 4y = 7			

15. Find the Solution of system of linear equation using Gauss–Seidel method
$$20x+y-2z=17,\ 3x+20y-z=-18,\ 2x-3y+20z=25.$$

16. Solve the equations
$$9x - y + 2z = 9$$
, $x + 10y - 2z = 15$, $-2x + 2y + 13z = 17$ CO4 **7** L3 using Gauss–Seidel method by taking (1, 1, 1) as initial approximate solution .

17. Solve the equations
$$\begin{bmatrix} 5 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 4 \\ -6 \end{bmatrix}$$
 using Gauss–Seidel method.

18. Find the eigen value and the eigen vectors of the matrix
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

19. Find the eigen values and the eigen vectors of the matrix
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

20. Find the eigen values and the eigen vectors of the matrix
$$\begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$$

21. Find the Eigen values and eigen vectors of the matrix
$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

22. Find the Largest Eigen value and the corresponding Eigen vector of the matrix
$$CO4$$
 7 L3
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$$
 by the power method. Perform five iteration. Take $[1, 0, 0]^T$ as initial approximation.

23. Find the largest eigen value and the corresponding eigen vector of the matrix
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 by using power method.

24. Find the largest eigen value and the corresponding eigen vector of the matrix
$$\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$$
 using the power methodby taking the initial approximation to the eigen vector as $\begin{bmatrix} 1, 0.8 & -0.8 \end{bmatrix}^T$. Perform five iterations.

25. Determine the largest (dominant) eigen value and the corresponding eigen vector of the matrix
$$\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 using the power method. Taking the initial Eigenvector as $\begin{bmatrix} 1,0,0 \end{bmatrix}'$