NAGARJUNA COLLEGE OF ENGINEERING AND TECHNOLOGY **Department of Mathematics**

Course Name: Advanced Calculus and

Even Semester 2023-24 Internal Assessment Test - I

Course Code:

Numerical Methods Date: 24/04/2024		al Methods	23MATS21/23MATE21/23MATC21 Time: 9:30 - 10:30am / 11:00am - 12:00pm		Semester: II		
					Max. Marks: 25		
		fivote. Allswer any O	NE full question from each PART]				
SI			PART-A			,	
No		<i>√</i>	QUESTIONS	00	RBT		
•1.	a)			COs	Levels	Marks	
	,	$x \log z = v^2 - 1$ and $v^2 = 2$	e angle between the tangent planes to the surfaces		L2	05	
	b)	$x log z = y^2 - 1 \text{ and } x^2 y = 2 - z \text{ at}$ Prove that $\vec{A} = (6 - z)^2 + (2 - z)^2 = 2$	the point $(1,1,1)$.				
$(3x^2 - 2)/(4 + (3x^2 - 2))/(3x^2 - 2)/(3x^2 - 2)/(4 + (3x^2 - 2))/(3x^2 - 2)/(3x^2 - 2$		$(z)\hat{j} + (3xz^2 - y)\hat{k}$ is irrotational and	CO ₁	L3	05		
		find a scalar function f(x,y,z) such that A					
2.	a)	Find the directional derivative of $\emptyset = x^2$	(OR)				
		the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$.	yz + 4xz at the point $(1,-2,1)$ in	CO ₁	L2	05	
	b)	Evaluate $\int [(xy + y^2)dx + x^2dy]$.wi	here c is the houndary law.				
		and $y = x^2$, using Green's Theorem.	Here c is the boundary by $y = x$	CO ₁	L3	05	
		, assis orden a medicini	PART-B				
٠ 3.	a)	Find the real root of the equation $cosx =$		000			
	places using the method of False position.		CO2	L2	05		
	b)	b) The area A of a circle of diameter d is given for the following values:		CO2	L3	05	
			90 95 100	002	LJ	05	
		A 5026 5674 (6362 7088 7854				
		Find the area of the circle of the diameter 105 by using suitable interpolation formula.					
		Tormura.					
			(OR)				
4.	a)	Applying Lagranges's formula find y wh	nen x=3 given the data	CO2	L2	05	
	**		2 5	002	1.2	05	
	2.1	-(-)	12 147				
	· b)	Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Trapezoida	ıl rule by taking 6 sub intervals.	CO ₂	L3	05	
		PART	-C				
5.	a)	Evaluate divergence of $2x^2z \hat{i} - xy^2z\hat{j}$	$+3yz^2\hat{k}$.	CO1	L2	02	
	b)	State Green's theorem in the plane.		COI	L1	03	
	-,		(OR)	001	LI	02	
			1				
6.	a)	Using Newton-Raphson method, find the	he real root of the equation	CO2	L2	03	
	2.1	$x^3 + x^2 + 3x + 4 = 0$ perform two ite	ration which is near $x = -1$.				
	b)	State Simpson's one third rule.		CO ₂	L1	02	

or Engineering & Technology

NAGARJUNA COLLEGE OF ENGINEERING AND TECHNOLOGY

Department of Mathematics Even Semester 2023-24 Internal Assessment Tost

	Internal Assessment Test – II		
Course Name: Advanced Calculus:	and Numerical	Course Code	

Methods Date: 11/06/2024		23M	Course Code: 23MATS21/23MATC21		Semester: II		
Date	: 11/06	5/2024 Tim	ie: 9:30-10:30am / 11:00-12	2:00pm	Max.Marks: 25		
		[Note: Answer any ONE full quest	ion from each PART]				
Sl. No		PART-A	A	COs	RBT Levels	Marks	
1.	a.	Employ Taylor's method to obtain approximate correct to four decimal places for the differential		CO2	L3	5M	
		$\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$.					
	b.	Use Modified Euler's Method to solve $\frac{dy}{dx} = lo$		CO2	L3	5M	
		x = 0.2 correct to four decimal places with $h = 1$ formula twice).	,				
_		(OR)		CO2	L3	5M	
→ 2.	a.	Using Runge-Kutta method of order four, find decimal places for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, y		COZ	בבו	3101	
	b.	Given $y' = x - y^2$, using the data $y(0) = 0$, $y(0.4) = 0.0795$, $y(0.6) = 0.1762$. Comput four decimal places by applying Milne's meth formula twice)	y(0.2) = 0.02, e y at x = 0.8 correct to	CO2	L3	5M	
		PART	-B				
3.	a.	Solve $(D^2 + 2D + 1) y = x^2 + 2x$. Turn		CO3	L2	5M	
	b.	Using the method of variation of parameter, s	olve	CO3	L3	5M	
		$\frac{d^2y}{dx^2} + a^2y = \cos e cax. $ (OR)				
	*	(ON	·)	CO3	L2	5M	
4.	a.	Solve $\frac{d^3y}{dx^3} + y = 0$. Solve $x^2y'' - xy' + y = \log x$. PART	/	CO3	L3	5M	
	b.	Solve $x^2y'' - xy + y = \log x$. PART	, Г-С	CO4	L2	5M	
. 5.	a.	Form the Partial Differential Equation by elements from $z = a \log(x^2 + y^2) + b$.	liminating arollrary	C04	1.2	5141	
. 6.	a.	Form the Partial Differential Equation by equation from $f(x^2 + y^2, z - xy) = 0$.	liminating the arbitrary	CO4	L2	5M	

NAGARJUNA COLLEGE OF ENGINEERING AND TECHNOLOGY

(An autonomous institution under VTU)

Department Of Mathematics

Second Semester

CCE1-Questions

Academic Year 2023-24

Note: Each Question carries 10 Marks

- Prove that $\vec{A} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational and find a scalar function f(x, y, z) such that $\vec{A} = \nabla f$.
 - If $\vec{F} = 3xy\hat{i} y^2\hat{j}$, then evaluate $\int_C \vec{F} \cdot d\vec{r}$, where C is the curve in the xy plane given by $y = 2x^2$ from (0, 0) to (1, 2).
- 2. a Show that $\vec{F} = (y + z)i + (z + x)j + (x + y)k$ is irrotational. Also find a scalar function \emptyset such that $\vec{F} = \nabla \emptyset$.
 - If $\vec{A} = (3x^2 + 6y) \hat{i} 14yz \hat{j} + 20xz^2 \hat{k}$, evaluate $\int_C \vec{A} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the path x = t, $y = t^2$, $z = t^3$.
- 3. a Evaluate curl \vec{F} where $\vec{F} = \text{grad}(x^3y + y^3z + z^3x x^2y^2z^2)$.
 - Find the total work done by the force $\vec{F} = 3xy\hat{\imath} y\hat{\jmath} + 2zx\hat{k}$ in moving a particle around the circle $x^2 + y^2 = 4$.
- 4. a Find the values of a and b such that the surfaces $5x^2 2yz 9z + 9 = 0$ may cut the surface $ax^2 + by^3 = 4$ orthogonally at the point (1, -1, 2).
 - Use Green's Theorem to evaluate $\int_c xy dx + x^2 y^3 dy$, where C is the triangle with vertices (0,0), (1,0), (1,2) with positive orientation.
- 5. a Evaluate curl \vec{F} where $\vec{F} = \text{grad}[x^3 + y^3 + z^3 3xyz]$.
 - Using Green's theorem to evaluate $\int_C [(y \sin x) dx + \cos x dy]$ where C is the plane triangle enclosed by the lines y = 0, $x = \pi/2$ and $y = 2x/\pi$.
- 6. a Find the directional derivative of $f = x^2 y^2 + 2z^2$ at the point P(1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4). Also calculate the magnitude of the maximum directional derivative.
 - Apply Green's theorem to evaluate $\int_C [(2x^2 y^2)dx + (x^2 + y^2) dy]$ where C is the boundary of the area enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = a^2$.
- 7. a If $\vec{A} = (x + y + az)\hat{i} + (bx + 2y z)\hat{j} + (x + cy + 2z)\hat{k}$ find a, b and c such that curl $\vec{A} = 0$ (i.e., \vec{A} is irrotational).
 - b Use Green's Theorem to evaluate $\int_c [x^2y \, dx + x^2 \, dy]$ where C is the boundary described counter clockwise of triangle with vertices (0,0), (1,0), (1,1).
- 8. a Find the directional derivative of $\emptyset = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the of the normal to the surface $x \log z y^2 = -4$ at (-1,2,1)
 - b Use Stoke's theorem to evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = y^2 \hat{i} + x^2 \hat{j} (x + z)\hat{k}$ and C is the boundary of the triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0).
- 9. a Find the values of the a and b such that $\vec{F} = (axy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3bxz^2 y)\hat{k}$ is irrotational.
 - Apply Stoke's theorem to evaluate $\int_c [y dx + z dy + x dz]$ where C is the curve of intersection of $x^2 + y^2 + z^2$ = a^2 and x + z = a.
- 10. a Find the angle between the tangent planes to the surfaces $x \log z = y^2 1$ and $x^2y = 2 z$ at the point (1, 1, 1)
 - b Evaluate $\int_c [(xy + y^2)dx + x^2dy]$, where C is bounded by y = x and $y = x^2$, using Green's Theorem.

Nagarjuna College of Engineering & Technology (Autonomous Institute Affiliated to VTU)

Second Semester BE Degree SE Examination, July- 2024

Advanced Calculus and Numerical Methods

Max. Marks: 100 Time: 3Hrs.

	Note: Answer any one full question from each module. Module - 1	COs	M	BL		
·1a	Find the unit vector normal to the surface $xy^3z^2 = 4$ at the point $(-1, -1, 2)$.			L2		
b	Evaluate $\operatorname{div} \overrightarrow{F}$ and $\operatorname{curl} \overrightarrow{F}$ where $\overrightarrow{F} = \operatorname{grad}[x^3 + y^3 + z^3 - 3xyz]$.	CO1	7	L2		
С	Using Green's theorem to evaluate $\int_c [(y - \sin x) dx + \cos x dy]$ where C is the	CO1	7	L3		
	plane triangle enclosed by the lines $y = 0$, $x = \pi/2$ and $y = 2x/\pi$.					
	OR					
2a	Find the directional derivative of $\emptyset = x^2yz + 4xz^2$ at the point $(1, -2, 1)$ in the	CO1	6	L2		
	direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$.					
b	Find the values of a and b such that the surfaces $5x^2 - 2yz - 9z + 9 = 0$ may cut CO1 7 I					
	the surface $ax^2 + by^3 = 4$ orthogonally at the point $(1, -1, 2)$.					
С	Find the total work done by the force $\vec{F} = 3xy\hat{\imath} - y\hat{\jmath} + 2zx\hat{k}$ in moving a particle	CO1	7	L3		
	around the circle $x^2 + y^2 = 4$.					
_	Module - 2					
3a	Using Newton – Raphson method find the real root of $xsinx + cosx = 0$ correct to	CO2	6	L3		
	three decimal places which is near $x = \pi$.					
b	The area A of a circle of diameter d is given for the following values: d 80 85 90 95 100					
	A 5026 5674 6362 7088 7854	CO2	7	L3		
	Find the area of the circle of the diameter 105 by using suitable interpolation	002	•			
	formula.					
С	Evaluate $\int_0^1 \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's three eighth rule.					
	Hence deduce the value of $\log 2$.	CO2	7	L3		
	OR					
• 4a	Lie Regula Falsi method to find the real root of $xe^x = \cos x$ correct to four decimal					
4 a	places which lies in the interval (0, 1). Carry out three iterations.			L3		
b·						
U	x 5 7 11 13 17	000	-	. .		
	f(x) 150 392 1452 2366 5202	CO2	7	L3		
	Evaluate f(9) using Lagrange's Interpolation formula.					
c	Use Simpson's one third rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking 6 sub intervals.	CO ₂	7	L3		
·	Module - 3					
5a	Employ Taylor's series method to obtain approximate value of y at $x = 0.2$ for the					
Ja	differential equation $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$.	CO ₂	6	L3		
	differential equation dx $dx = \int_{-\infty}^{\infty} dy y^2 - x^2 (0) 1$					
b	Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0)=1 at	CO2	7	L3		
	x = 0.2 correct to four decimal places by taking $h = 0.2$.					
С	Given $y' = x - y^2$, using the data $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$,	*				
	y(0.6) = 0.1762, compute y at $x = 0.8$ correct to four decimal places by applying	CO ₂	7	L3		
	Milne's method. Apply the corrector formula twice.					

23MATS21/23MATE21/23MATC2-

6a	Find the value of y at $x = 0.1$ to five places of decimals by Taylor's series method from $\frac{dy}{dx} = x^2y - 1$, $y(0) = 1$.	CO2	6	L3
b	Apply Runge-Kutta method of fourth order to solve $\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$ at $x = 1.2$ given	CO2	7	L3
С	$y_0 = 0$ when $x_0 = 1$ correct to four decimal places by taking $h = 0.2$. Using Modified Euler's Method find $y(0.1)$ correct to four decimal places given that $\frac{dy}{dx} = x - y^2$, $y(0) = 1$. Taking $h = 0.1$, use modified formula twice.	CO2	7	L3
	Module - 4			
7a	Solve $(4D^4 - 8D^3 - 7D^2 + 11D + 6)$ $y = 0$.	CO3	6	L2
b	Find the general solution of $\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$.	CO3	7	L2
c	Obtain the solution of $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$.	CO3	7	L3
8a	Ohtain v hv colving $(D^2 + 2D + 1)v = v^2 + 2v$	CO3	6	L2
	Obtain y by solving $(D^2 + 2D + 1)y = x^2 + 2x$.			
b	Find the general solution of $\frac{d^2y}{dx^2}$ - $6\frac{dy}{dx}$ + $9y = 6e^{3x} + 7e^{-2x} - \log 2$.	CO3	7.	L2
c	Using the method of variation of parameter solve $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$.	CO3	7	L3
	Module - 5			
• 9a	Form a partial differential equation by eliminating the arbitrary constants a, b, c from the relation $z = ax + by + cxy$.	CO4	6	L2
b	Solve $\frac{\partial^2 z}{\partial x^2} = xy$ subject to the condition that $\frac{\partial z}{\partial x} = \log(1+y)$ when $x = 1$ and $z = 0$ when $x = 0$.	CO4	7	L2
c	Find all various possible solutions of one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$			
		CO4	7	L3
	by the method of separation of variables.			
	OR			
10a	Form a partial differential equation by eliminating the arbitrary function from	CO4	6	т э
	$z = y^2 + 2f\left(\frac{1}{x} + \log y\right).$	CO4	6	L2
b	Solve the equation $\frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial y} - 6z = 0$ given that $z = x$ and $\frac{\partial z}{\partial y} = 0$,	CO4	7	L2
	· · · · · · · · · · · · · · · · · · ·			

Solve by the method of separation of variables $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ where

when y = 0.

 $u(0, y) = 2e^{5y}$.

L3

CO4