NAGARJUNA COLLEGE OF ENGINEERING AND TECHNOLOGY

(An autonomous institution under VTU)

Mudugurki Village, Venkatagirikote Post, Devanahalli Taluk, Bengaluru – 562164

NAGARJUNA COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MATHEMATICS

ADVANCED CALCULUS AND NUMERICAL METHODS

(COURSE CODE 22MATS21/22MATC21/22MATE21)

CLASS NOTES FOR II SEM B.E.

MODULE-1 VECTOR CALCULUS

SYLLABUS:

Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence -physical interpretation, solenoidal and irrotational vector fields. Problems. **Vector Integration:** Line integrals, Surface integrals. Applications to work done by a force and flux.Statement of Green's theorem and Stoke's theorem. Problems.

VECTOR DIFFERENTIATION:

If a vector \vec{r} varies continuously as a scalar variable t changes, then \vec{r} is called a function of t and is written as $\vec{r} = \vec{F}(t)$.

The derivative of a vector function $\vec{r} = \vec{F}(t)$ is denoted by $\frac{d\vec{r}}{dt}$ or $\frac{d\vec{F}}{dt}$ or $\vec{F}'(t)$ and is defined by $\frac{d\vec{F}}{dt} = \lim_{\delta t \to 0} \frac{\vec{F}(t+\delta t) - \vec{F}(t)}{\delta t}$.

Scalar point function:

Definition:

If to each point P(x, y, z) in the region R of a space with the position vector \vec{r} there exists a definite scalar $\emptyset(x, y, z)$, then $\emptyset(x, y, z)$ is called the scalar point function in R and the region R is called the scalar field.

Example: (i) $\emptyset = xyz$ and (ii) $\psi = x^2 + y^2 + z^2$ are scalar point functions.

Vector point function:

Definition:

If to each point P(x, y, z) in the region R of a space with the position vector \vec{r} there exists a definite vector $\vec{F}(x, y, z)$, then $\vec{F}(x, y, z)$ is called the vector point function in R and the region R is called the vector field.

Example: (i) $\vec{F} = (x + y)\hat{i} + xy\hat{j} + z\hat{k}$ and

(ii) $\vec{A} = (x - y^2)\hat{i} + x^2z\hat{j} + (x + y)\hat{k}$ are vector point functions.

The vector differential operator:

The vector differential operator denoted by ∇ (read as del or nabla) and is defined by

$$\nabla = \frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k} = \sum \frac{\partial}{\partial x}\hat{i}$$

Gradient of a scalar field:

If $\emptyset = \emptyset(x, y, z)$ be any scalar point function then gradient of \emptyset is defined by

grad
$$\emptyset = \nabla \emptyset = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right)\emptyset = \frac{\partial\emptyset}{\partial x}\hat{i} + \frac{\partial\emptyset}{\partial y}\hat{j} + \frac{\partial\emptyset}{\partial z}\hat{k} = \sum \frac{\partial\emptyset}{\partial x}\hat{i}.$$

Here $\nabla \emptyset$ is a vector quantity.

Physical Interpretation of Gradient:

Gradient ∇F tells us that in which direction change in the field (F) is maximum.

Geometrical meaning:

Let $\emptyset(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{c}$ be the equation of a surface, then $\nabla \emptyset$ is the normal vector at a point $\mathbf{P}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to the surface $\emptyset(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{c}$. Therefore the unit normal vector to the surface

$$\emptyset(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{c}$$
 is given by $\widehat{\mathbf{n}} = \frac{\nabla \emptyset}{|\nabla \emptyset|}$

Note:

(i) We know that the angle between the two surfaces is defined as the angle between their

normal. Therefore the angle θ between two surfaces $\emptyset_1(x, y, z) = c_1$ and $\emptyset_2(x, y, z) = c_2$ is equal to the angle between their normal $\nabla \emptyset_1$ and $\nabla \emptyset_2$ and is given by

$$\cos \theta = \frac{\nabla \emptyset_1 . \nabla \emptyset_2}{|\nabla \emptyset_1| |\nabla \emptyset_2|}$$

(ii) If $\theta = \frac{\pi}{2}$ or 90°, then the surfaces are said to be intersect each other orthogonally.

i.e., If $\nabla \emptyset_1 \cdot \nabla \emptyset_2 = 0$, then the surfaces are said to be intersect each other orthogonally.

Problems:

1. Find ∇f when $f = \log(x^2 + y^2 + z^2)$

Solution:

Let $f = log(x^2 + y^2 + z^2)$(1)

We have $\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$(2)

Differentiating equation (1) partially w. r. t. x, y and z we get,

$$\frac{\partial f}{\partial x} = \frac{2x}{(x^2 + y^2 + z^2)}, \quad \frac{\partial f}{\partial y} = \frac{2y}{(x^2 + y^2 + z^2)} \text{ and } \quad \frac{\partial f}{\partial z} = \frac{2z}{(x^2 + y^2 + z^2)}. \text{ Substituting in (2), we get,}$$
$$\nabla f = \frac{2x}{(x^2 + y^2 + z^2)}\hat{i} + \frac{2y}{(x^2 + y^2 + z^2)}\hat{j} + \frac{2z}{(x^2 + y^2 + z^2)}\hat{k}. \quad \text{Thus } \quad \nabla f = \frac{2(x\hat{i} + y\hat{j} + z\hat{k})}{(x^2 + y^2 + z^2)}.$$

2. If $\emptyset = x^2 y^3 z^4$, find $\nabla \emptyset$, $|\nabla \emptyset|$ at (1,-1,1)

Solution:

Let $\emptyset = x^2 y^3 z^4$(1) We have $\nabla \emptyset = \frac{\partial \emptyset}{\partial x} \hat{i} + \frac{\partial \emptyset}{\partial y} \hat{j} + \frac{\partial \emptyset}{\partial z} \hat{k}$(2)

Differentiating equation (1) partially w. r. t. x, y and z we get,

 $\frac{\partial \phi}{\partial x} = 2xy^3 z^4 \quad \frac{\partial \phi}{\partial y} = 3x^2 y^2 z^4 \quad \text{and} \quad \frac{\partial \phi}{\partial z} = 4x^2 y^3 z^3. \text{ Substituting in (2), we get,}$ $\nabla \phi = 2xy^3 z^4 \quad \hat{i} + 3x^2 y^2 z^4 \quad \hat{j} + 4x^2 y^3 z^3 \quad \hat{k}.$ At (1,-1,1) $\nabla \phi = -2 \quad \hat{i} + 3 \quad \hat{j} - 4 \quad \hat{k}, \text{ and } \quad |\nabla \phi| = \sqrt{(-2)^2 + 3^2 + (-4)^2} = \sqrt{29}$ 3. If $\vec{r} = x \quad \hat{i} + y \quad \hat{j} + z \quad \hat{k} \quad \text{and } r = |\vec{r}| \quad \text{then prove that } \quad \nabla (r^n) = nr^{n-2}\vec{r}.$ Solution: Given $\vec{r} = x \quad \hat{i} + y \quad \hat{j} + z \quad \hat{k} = \sum x \quad \hat{i} \dots \dots (1) \quad \therefore \quad r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$

Given $\Gamma = x \Gamma + y \Gamma + z R = \sum x \Gamma \dots (\Gamma) \quad \dots \quad \Gamma = |\Gamma| = \sqrt{x^2 + y^2 + z^2}$ $\therefore r^2 = x^2 + y^2 + z^2$, Differentiating partially w. r. t. x we get $2r \frac{\partial r}{\partial x} = 2x \quad \therefore \quad \frac{\partial r}{\partial x} = \frac{x}{r}$, Similarly, we get $\frac{\partial r}{\partial y} = \frac{y}{r}$ and $\frac{\partial r}{\partial z} = \frac{z}{r}$. Using $\nabla \emptyset = \sum \frac{\partial \emptyset}{\partial x} \hat{i}$, we get, $\nabla(r^n) = \sum \frac{\partial r^n}{\partial x} \hat{i} = \sum nr^{n-1} \frac{\partial r}{\partial x} \hat{i} = n \sum r^{n-1} \frac{x}{r} \hat{i} = n \sum r^{n-2} x \hat{i} = nr^{n-2} \sum x \hat{i}$. $\therefore \quad \nabla(r^n) = nr^{n-2} \vec{r}$ 4. Find a unit vector normal to the surface $xy^3z^2 = 4$ at the point (-1, -1, 2).

4. Find a unit vector normal to the surface $xy^3z^2 = 4$ at the point (-1, -1, 2). Solution:

Let
$$\emptyset = xy^3z^2 - 4 = 0$$
(1)

Differentiating equation (1) partially w. r. t. x, y and z we get,

$$\frac{\partial \emptyset}{\partial x} = y^3 z^2, \quad \frac{\partial \emptyset}{\partial y} = 3xy^2 z^2, \quad \frac{\partial \emptyset}{\partial z} = 2xy^3 z.$$
We have $\nabla \emptyset = \frac{\partial \emptyset}{\partial x} \hat{i} + \frac{\partial \emptyset}{\partial y} \hat{j} + \frac{\partial \emptyset}{\partial z} \hat{k}$

$$\therefore \nabla \emptyset = y^3 z^2 \hat{i} + 3xy^2 z^2 \hat{j} + 2xy^3 z \hat{k} \qquad \therefore \nabla \emptyset_{(-1,-1,2)} = -4 \hat{i} - 12 \hat{j} + 4 \hat{k}$$

$$\therefore |\nabla \emptyset| = \sqrt{(-4)^2 + (-12)^2 + 4^2} = \sqrt{176} = \sqrt{16 * 11} = 4\sqrt{11}$$

$$\therefore \text{ The unit vector normal is } \hat{n} = \frac{\nabla \emptyset}{|\nabla \emptyset|} = \frac{-4 \hat{i} - 12 \hat{j} + 4 \hat{k}}{4\sqrt{11}} = \frac{-\hat{i} - 3 \hat{j} + \hat{k}}{\sqrt{11}}.$$
5. Find the angle between the tangent planes to the surfaces $x \log z = y^2 - 1$ and $x^2 y = 2 - z$ at the point $(1, 1, 1)$

Solution:

Let
$$\emptyset_1 = x \log z - y^2 + 1 = 0$$
(1) and $\emptyset_2 = x^2 y - 2 + z = 0$ (2)
 $\therefore \frac{\partial \emptyset_1}{\partial x} = \log z, \quad \frac{\partial \emptyset_1}{\partial y} = -2y, \quad \frac{\partial \emptyset_1}{\partial z} = \frac{x}{z}, \quad \frac{\partial \emptyset_2}{\partial x} = 2xy, \quad \frac{\partial \emptyset_2}{\partial y} = x^2, \quad \frac{\partial \emptyset_2}{\partial z} = 1.$
We have $\nabla \emptyset = \frac{\partial \emptyset}{\partial x} \hat{i} + \frac{\partial \emptyset}{\partial y} \hat{j} + \frac{\partial \emptyset}{\partial z} \hat{k}$
 $\therefore \nabla \emptyset_1 = \log z \hat{i} - 2y \hat{j} + \frac{x}{z} \hat{k} \text{ and } \nabla \emptyset_2 = 2xy \hat{i} + x^2 \hat{j} + \hat{k}$
 $\therefore \operatorname{At} (1, 1, 1), \quad \nabla \emptyset_1 = 0 \hat{i} - 2\hat{j} + \hat{k} \text{ and } \nabla \emptyset_2 = 2 \hat{i} + \hat{j} + \hat{k}$
 $\therefore |\nabla \emptyset_1| = \sqrt{0^2 + (-2)^2 + 1^2} = \sqrt{5} \text{ and } |\nabla \emptyset_2| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$
Let θ be the angle between the tangent planes of the two surfaces, then
we have, $\cos \theta = \frac{\nabla \emptyset_1 \cdot \nabla \emptyset_2}{2} \quad \therefore \cos \theta = \frac{(0 \hat{i} - 2\hat{j} + \hat{k}) \cdot (2 \hat{i} + \hat{j} + \hat{k})}{2 \hat{i} + \hat{j} + \hat{k}} = \frac{0 - 2 + 1}{2} = \frac{-1}{2}$

we have, $\cos \theta = \frac{1}{|\nabla \emptyset_1| ||\nabla \emptyset_2|}$ $\therefore \cos \theta = \frac{1}{\sqrt{5}\sqrt{6}} = \frac{1}{\sqrt{30}} = \frac{1}{\sqrt{30}}$ $\therefore \theta = \cos^{-1}\left(\frac{-1}{\sqrt{30}}\right).$

6. Find the angle between the directions of the normal to the surface $x^2yz = 1$ at the points (-1, 1, 1) and (1, -1, -1).

Solution:

Let $\emptyset = x^2 yz - 1$

We have
$$\nabla \phi = \frac{\partial \phi}{\partial x} \hat{i} + \frac{\partial \phi}{\partial y} \hat{j} + \frac{\partial \phi}{\partial z} \hat{k}$$

 $\nabla \phi = 2xyz\hat{i} + x^2z\hat{j} + x^2y\hat{k}$
i) At $(-1, 1, 1)$ $\nabla \phi = -2\hat{i} + \hat{j} + \hat{k}$
 $|\nabla \phi| = \sqrt{6}$
 $\widehat{n_1} = \frac{\nabla \phi}{|\nabla \phi|} = \frac{-2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}$
ii) At $(1, -1, -1)$ $\nabla \phi = 2\hat{i} - \hat{j} - \hat{k}$
 $|\nabla \phi| = \sqrt{6}$
 $\widehat{n_2} = \frac{\nabla \phi}{|\nabla \phi|} = \frac{2\hat{i} - \hat{j} - \hat{k}}{\sqrt{6}}$
 $\cos \theta = \widehat{n_1} \cdot \widehat{n_2} = \frac{-2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}} \cdot \frac{2\hat{i} - \hat{j} - \hat{k}}{\sqrt{6}} = -1$

$$\theta = 180^{\circ} = \pi$$

7. Find the values of a and b such that the surfaces $5x^2 - 2yz - 9z + 9 = 0$ may cut the surface $ax^2 + by^3 = 4$ orthogonally at the point (1, -1, 2).

Solution:

Let
$$\emptyset_1 = 5x^2 - 2yz - 9z + 9 = 0$$
(1) and $\emptyset_2 = ax^2 + by^3 - 4 = 0$(2)
 $\therefore \frac{\partial \theta_1}{\partial x} = 10x, \quad \frac{\partial \theta_1}{\partial y} = -2z, \quad \frac{\partial \theta_1}{\partial z} = -2y - 9, \quad \frac{\partial \theta_2}{\partial x} = 2ax, \quad \frac{\partial \theta_2}{\partial y} = 3by^2, \quad \frac{\partial \theta_2}{\partial z} = 0.$
We have $\nabla \emptyset = \frac{\partial \theta}{\partial x} \hat{i} + \frac{\partial \theta}{\partial y} \hat{j} + \frac{\partial \theta}{\partial z} \hat{k}$
 $\nabla \emptyset_1 = 10x \hat{i} - 2z\hat{j} + (-2y - 9)\hat{k}$ and $\nabla \emptyset_2 = 2ax \hat{i} + 3by^2\hat{j} + 0\hat{k}$
At $(1, -1, 2), \quad \nabla \emptyset_1 = 10\hat{i} - 4\hat{j} - 7\hat{k}$ and $\nabla \emptyset_2 = 2a\hat{i} + 3b\hat{j} + 0\hat{k}$
If two surfaces cut orthogonally, then we have, $\nabla \emptyset_1 \cdot \nabla \emptyset_2 = 0$
 $\therefore (10\hat{i} - 4\hat{j} - 7\hat{k}) \cdot (2a\hat{i} + 3b\hat{j} + 0\hat{k}) = 0$
 $\therefore 20a - 12b = 0 \quad \therefore 5a - 3b = 0$(3)

The point (1, -1, 2) lies on the equation (2). \therefore we get a - b = 4.....(4)

Solving equations (3) and (4), we get a = -6 and b = -10.

HOME WORK:

- 1. If $f = 3x^2y y^3z^2$ find ∇f and $|\nabla f|$ at (1, -2, -1)
- 2. Find a unit vector normal to the surface xy + yz + zx = c at the point (-1, 2, 3).
- 3. Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1).
- 4. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point P(2, -1, 2).
- 5. Find the constants a and b such that the surface $ax^2 byz = (a + 2)x$ will be orthogonal to the Surface $4x^2y + z^3 = 4$ at the point (1, -1, 2).

Directional derivatives:

Definition:

If $\emptyset(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is any scalar point function and \mathbf{d} is a given direction, then $\nabla \emptyset$. $\hat{\mathbf{n}}$,

where $\hat{\mathbf{n}} = \frac{\vec{\mathbf{d}}}{|\vec{\mathbf{d}}|}$, is called the directional derivative of \emptyset along $\vec{\mathbf{d}}$.

Note:

The directional derivative of a scalar function \emptyset at any point is maximum along $\nabla \emptyset$ and its maximum value is equal to $|\nabla \emptyset|$.

Problems:

1. Find the directional derivative of $\emptyset = x^2yz + 4xz^2$ at the point (1, -2, 1) in the

direction of the vector $2\hat{\iota} - \hat{j} - 2\hat{k}$.

Solution:

Given
$$\emptyset = x^2yz + 4xz^2$$
 $\therefore \frac{\partial\emptyset}{\partial x} = 2xyz + 4z^2$, $\frac{\partial\emptyset}{\partial y} = x^2z$, $\frac{\partial\emptyset}{\partial z} = x^2y + 8xz$.
We have $\nabla \emptyset = \frac{\partial\emptyset}{\partial x}\hat{\imath} + \frac{\partial\emptyset}{\partial y}\hat{\jmath} + \frac{\partial\emptyset}{\partial z}\hat{k}$
 $\therefore \nabla \emptyset = (2xyz + 4z^2)\hat{\imath} + (x^2z)\hat{\jmath} + (x^2y + 8xz)\hat{k}$ $\therefore \nabla \emptyset_{(1, -2, 1)} = 0\hat{\imath} + \hat{\jmath} + 6\hat{k}$
Let $\vec{d} = 2\hat{\imath} - \hat{\jmath} - 2\hat{k}$. $\therefore |\vec{d}| = \sqrt{(2)^2 + (-1)^2 + (-2)^2} = \sqrt{9} = 3$
 $\therefore \hat{n} = \frac{\vec{d}}{|\vec{d}|} = \frac{2\hat{\imath} - \hat{\jmath} - 2\hat{k}}{3}$

- \therefore The directional derivative of \emptyset in the direction of d is
 - $\nabla \emptyset. \ \widehat{\boldsymbol{n}} = \left(\mathbf{0} \ \widehat{\boldsymbol{\iota}} + \widehat{\boldsymbol{j}} + \mathbf{6} \ \widehat{\boldsymbol{k}} \right) \cdot \left(\frac{2\widehat{\boldsymbol{\iota}} \widehat{\boldsymbol{j}} 2\widehat{\boldsymbol{k}}}{3} \right) = \frac{\mathbf{0} 1 12}{3} = \frac{-13}{3}.$

2. Find the directional derivative of $\emptyset = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the of the normal to the surface $x \log z - y^2 = -4$ at (-1, 2, 1)

Solution:

Given $\emptyset = xy^2 + yz^3$ $\therefore \frac{\partial\emptyset}{\partial x} = y^2$, $\frac{\partial\emptyset}{\partial y} = 2xy + z^3$, $\frac{\partial\emptyset}{\partial z} = 3yz^2$. We have $\nabla \emptyset = \frac{\partial\emptyset}{\partial x}\hat{i} + \frac{\partial\emptyset}{\partial y}\hat{j} + \frac{\partial\emptyset}{\partial z}\hat{k}$ $\therefore \nabla \emptyset = y^2\hat{i} + (2xy + z^3)\hat{j} + 3yz^2\hat{k}$ $\therefore \nabla \emptyset_{(2,-1,-1)} = \hat{i} - 3\hat{j} - 3\hat{k}$ Let the given surface be $\Psi = x \log z - y^2 + 4 = 0$ $\therefore \frac{\partial\Psi}{\partial x} = \log z$, $\frac{\partial\Psi}{\partial y} = -2y$, $\frac{\partial\Psi}{\partial z} = \frac{x}{z}$ We have $\nabla \Psi = \frac{\partial\Psi}{\partial x}\hat{i} + \frac{\partial\Psi}{\partial y}\hat{j} + \frac{\partial\Psi}{\partial z}\hat{k}$ $\therefore \nabla \Psi = \log z \hat{i} - 2y\hat{j} + \frac{x}{z}\hat{k}$ $\therefore \nabla \Psi_{(-1,-2,-1)} = 0 \hat{i} - 4\hat{j} - \hat{k}$ \therefore The normal to the surface Ψ is $\nabla \Psi = -4\hat{j} - \hat{k}$. \therefore Let $\vec{d} = \nabla \Psi = -4\hat{j} - \hat{k}$. $\therefore |\vec{d}| = \sqrt{(-4)^2 + (-1)^2} = \sqrt{17}$ $\therefore \hat{n} = \frac{\vec{d}}{|\vec{d}|} = \frac{-4\hat{j} - \hat{k}}{\sqrt{17}}$ \therefore The directional derivative of \emptyset in the direction of \vec{d} is

$$\nabla \emptyset. \ \widehat{\boldsymbol{n}} = \left(\widehat{\boldsymbol{\iota}} - 3\widehat{\boldsymbol{j}} - 3\widehat{\boldsymbol{k}}\right). \left(\frac{-4\widehat{\boldsymbol{j}} - k}{\sqrt{17}}\right) = \frac{0 + 12 + 3}{\sqrt{17}} = \frac{15}{\sqrt{17}}$$

3. Find the directional derivative of $f = x^2 - y^2 + 2z^2$ at the point P(1, 2, 3) in the

direction of the line PQ where Q is the point (5, 0, 4). Also calculate the magnitude of the maximum directional derivative.

Solution:

Given $f = x^2 - y^2 + 2z^2$ $\therefore \quad \frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = -2y, \quad \frac{\partial f}{\partial z} = 4z$ We have $\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$ $\therefore \quad \nabla f = 2x\hat{i} - 2y\hat{j} + 4z\hat{k} \quad \therefore \quad \nabla f_{(1, 2, 3)} = 2 - 4\hat{j} + 12\hat{k}$ Given P = (1, 2, 3) and Q = (5, 0, 4) $\therefore \quad \overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (5\hat{i} + 0\hat{j} + 4\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = 4\hat{i} - 2\hat{j} + \hat{k}$ Now take $\overrightarrow{d} = \overrightarrow{PQ} = 4\hat{i} - 2\hat{j} + \hat{k} \quad \therefore \quad |\overrightarrow{d}| = \sqrt{(4)^2 + (-2)^2 + (1)^2} = \sqrt{21}$ $\therefore \quad \widehat{n} = \frac{\overrightarrow{d}}{|\overrightarrow{d}|} = \frac{4\hat{i} - 2\hat{j} + \hat{k}}{\sqrt{21}}$

 \therefore The directional derivative of f along $\vec{d} = \vec{PQ}$ is

$$\nabla f. \ \hat{n} = (2 \ \hat{\iota} - 4 \ \hat{j} + 12 \ \hat{k}). \frac{(4 \ \hat{\iota} - 2 \ \hat{j} + \ \hat{k})}{\sqrt{21}} = \frac{(8 + 8 + 12)}{\sqrt{21}} = \frac{28}{\sqrt{21}}$$

 \therefore The magnitude of the maximum directional derivative is

$$|\nabla f| = \sqrt{(2)^2 + (-4)^2 + (12)^2} = \sqrt{164}$$

HOME WORK:

1. Find the directional derivative of $f = xy^3 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.

Divergence of a vector function:

Definition:

If $\vec{F} = F_1 \hat{\iota} + F_2 \hat{j} + F_3 \hat{k}$ is a vector function differentiable at each point (x, y, z),

then the divergence of \vec{F} is denoted by $div\vec{F}$ or $\nabla \cdot \vec{F}$ and is defined by

$$di\nu\vec{F} = \nabla \cdot \vec{F} = \left(\frac{\partial}{\partial x}\hat{\iota} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot \left(F_1\hat{\iota} + F_2\hat{j} + F_3\hat{k}\right) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$$

 $\therefore \ div\vec{F} = \sum \frac{\partial F_1}{\partial x}.$ Here $div\vec{F}$ is a scalar quantity.

Curl of a vector function:

Definition:

If $\vec{F} = F_1 \hat{\iota} + F_2 \hat{j} + F_3 \hat{k}$ is any vector function differentiable at each point (x, y, z), then curl of \vec{F} is denoted by curl $\vec{F} = \nabla X \vec{F}$ and is defined by

$$\operatorname{curl}\vec{F} = \nabla X\vec{F} = \begin{vmatrix} \hat{\iota} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)\hat{\iota} - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right)\hat{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right)\hat{k}$$

 $\therefore \text{ curl} \vec{F} = \sum \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \hat{\iota}.$ Here curl \vec{F} is a vector quantity.

Physical Interpretation of Divergence and Curl:

The divergence of a vector field represents the out flow rate from a point. However the curl of a vector field represents the rotation at a point.

Problems:

1. Evaluate divergence of
$$2x^2z\hat{\imath} - xy^2z\hat{\jmath} + 3yz^2\hat{k}$$
 at the point (1, 1, 1).

Solution:

Let
$$\vec{F} = 2x^2z\,\hat{\imath} - xy^2z\,\hat{\jmath} + 3yz^2\hat{k}$$
. i.e., $\vec{F} = F_1\hat{\imath} + F_2\hat{\jmath} + F_3\hat{k}$
Where $F_1 = 2x^2z$, $F_2 = -xy^2z$, $F_3 = 3yz^2$.
 $div\vec{F} = \nabla \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = \frac{\partial}{\partial x}(2x^2z) + \frac{\partial}{\partial y}(-xy^2z) + \frac{\partial}{\partial z}(3yz^2)$
 $\therefore div\vec{F} = 4xz - 2xyz + 6yz$. $\therefore div\vec{F}_{(1,1,1)} = 4 - 2 + 6 = 8$.

2. Evaluate curl \vec{F} at the point (1, 2, 3) given $\vec{F} = x^2 y z \ \hat{\iota} + x y^2 z \hat{\jmath} + x y z^2 \hat{k}$. Solution:

Given
$$\vec{F} = x^2 yz \ \hat{\iota} + xy^2 z \ \hat{\jmath} + xyz^2 \hat{k}$$
. i.e., $\vec{F} = F_1 \hat{\iota} + F_2 \hat{\jmath} + F_3 \hat{k}$
Where $F_1 = x^2 yz$, $F_2 = xy^2 z$, $F_3 = xyz^2$.

$$\therefore \operatorname{curl} \vec{F} = \nabla X \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 y z & x y^2 z & x y z^2 \end{vmatrix}$$
$$= \left(\frac{\partial}{\partial y} (xyz^2) - \frac{\partial}{\partial z} (xy^2z) \right) \hat{\imath} - \left(\frac{\partial}{\partial x} (xyz^2) - \frac{\partial}{\partial z} (x^2yz) \right) \hat{\jmath} + \left(\frac{\partial}{\partial x} (xy^2z) - \frac{\partial}{\partial y} (x^2yz) \right) \hat{k}$$
$$= (xz^2 - xy^2) \hat{\imath} - (yz^2 - x^2y) \hat{\jmath} + (y^2z - x^2z) \hat{k}$$
$$\therefore \operatorname{curl} \vec{F}_{(1,2,3)} = 5 \hat{\imath} - 16 \hat{\jmath} + 9 \hat{k}.$$

3. Evaluate div \overrightarrow{F} and curl \overrightarrow{F} at the point (1, 2, 3) where

$$\vec{F} = grad(x^3y + y^3z + z^3x - x^2y^2z^2)$$

Solution:

Let
$$\emptyset = x^3y + y^3z + z^3x - x^2y^2z^2$$
, then $\vec{F} = grad\emptyset = \frac{\partial\emptyset}{\partial x}\hat{i} + \frac{\partial\emptyset}{\partial y}\hat{j} + \frac{\partial\emptyset}{\partial z}\hat{k}$
 $\therefore \vec{F} = (3x^2y + z^3 - 2xy^2z^2)\hat{i} + (x^3 + 3y^2z - 2yx^2z^2)\hat{j} + (y^3 + 3z^2x - 2zx^2y^2)\hat{k}$
i.e., $\vec{F} = F_1\hat{i} + F_2\hat{j} + F_3\hat{k}$. Where $F_1 = 3x^2y + z^3 - 2xy^2z^2$,
 $F_2 = x^3 + 3y^2z - 2yx^2z^2$, $F_3 = y^3 + 3z^2x - 2zx^2y^2$.
Now $div\vec{F} = \nabla \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$
 $= \frac{\partial}{\partial x}(3x^2y + z^3 - 2xy^2z^2) + \frac{\partial}{\partial y}(x^3 + 3y^2z - 2yx^2z^2) + \frac{\partial}{\partial z}(y^3 + 3z^2x - 2zx^2y^2)$
 $= (6xy - 2y^2z^2) + (6yz - 2x^2z^2) + (6xz - 2x^2y^2)$
 $\therefore div\vec{F}_{(1, 2, 3)} = 12 - 72 + 36 - 18 + 18 - 8 = -32$.

Now,

$$Curl\vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (3x^2y + z^3 - 2xy^2z^2) & (x^3 + 3y^2z - 2yx^2z^2) & (y^3 + 3z^2x - 2zx^2y^2) \end{vmatrix}$$
$$= \hat{i} \left[\frac{\partial}{\partial y} (y^3 + 3z^2x - 2zx^2y^2) - \frac{\partial}{\partial z} (x^3 + 3y^2z - 2yx^2z^2) \right]$$

$$-\hat{j}\left[\frac{\partial}{\partial x}(y^3 + 3z^2x - 2zx^2y^2) - \frac{\partial}{\partial z}(3x^2y + z^3 - 2xy^2z^2)\right]$$
$$+\hat{k}\left[\frac{\partial}{\partial x}(x^3 + 3y^2z - 2yx^2z^2) - \frac{\partial}{\partial y}(3x^2y + z^3 - 2xy^2z^2)\right]$$
$$= [(3y^2 - 4zx^2y) - (3y^2 - 4yx^2z)]\hat{\iota} - [(3z^2 - 4xzy^2) - (3z^2 - 4xzy^2)]\hat{j}$$
$$+ [(3x^2 - 4yxz^2) - (3x^2 - 4xyz^2)]\hat{k}$$

- $\therefore \quad Curl \overrightarrow{F}_{(1,2,3)} = 0.$
- 4. Find curl(curl) of $\vec{A} = x^2 y \hat{\iota} 2xz \hat{\jmath} + 2yz \hat{k}$ at the point (1,0,2)

Solution:

Given $\vec{A} = x^2 y \,\hat{\imath} - 2xz \,\hat{\jmath} + 2yz \,\hat{k}$ i.e., $\vec{A} = A_1 \hat{\imath} + A_2 \hat{\jmath} + A_3 \hat{k}$. Where $A_1 = x^2 y$, $A_2 = -2xz$, $A_3 = 2yz$.

We have,
$$\operatorname{Curl}\vec{A} = \nabla X\vec{A} = \begin{vmatrix} \hat{\imath} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_1 & A_2 & A_3 \end{vmatrix} = \begin{vmatrix} \hat{\imath} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2y & -2xz & 2yz \end{vmatrix}$$

$$\therefore \quad \operatorname{Curl}\vec{A} = \hat{\iota}\left(\frac{\partial}{\partial y}(2yz) - \frac{\partial}{\partial z}(-2xz)\right) - \hat{J}\left(\frac{\partial}{\partial x}(2yz) - \frac{\partial}{\partial z}(x^2y)\right) + \hat{k}\left(\frac{\partial}{\partial x}(-2xz) - \frac{\partial}{\partial y}(x^2y)\right)$$

$$\therefore \quad curl\vec{A} = (2z+2x)\hat{\imath} - (0-0)\hat{\jmath} + (-2z-x^2)\hat{k}$$

$$\therefore \quad curl(curl\vec{A}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2z + 2x & 0 & -2z - x^2 \end{vmatrix}$$

$$\therefore curl(curl\vec{A}) = \hat{\iota}(0-0) - \hat{j}(-2x-2) + \hat{k}(0-0) = 2(x+1)\hat{j}$$

$$\therefore curl(curl\vec{A})_{(1,0,2)} = 4\hat{j}$$

HOME WORK:

1. Find the divergence and curl of the vector $\vec{V} = (xyz)\hat{\imath} + (3x^2y)\hat{\jmath} + (xz^2 - y^2z)\hat{k}$ at the point (2, -1, 1).

Evaluate div F and curl F at the point (1, 2, 3) given F = 3x² î + 5xy² ĵ + 5xyz³ k.
 If F = (x + y + 1)i + j - (x + y)k show that F. curl F = 0.
 Evaluate curl of 2x²z î - xy²z ĵ + 3yz² k at the point (1, 1, 1).
 Evaluate div F and curl F where F = grad[x³ + y³ + z³ - 3xyz].
 Find curl(grand Ø), given Ø = x² + y² - z.
 If F = (x + y + z)î + ĵ - (x + y)k then show that F. curl F = 2 - z

Solenoidal vectors:

Definition:

A vector point function \vec{F} is said to be solenoidal vector point function if $div\vec{F} = 0$ Irrotational vector field or conservative force field:

Definition:

A vector field \vec{F} is said to be Irrotational vector field if $\operatorname{curl} \vec{F} = 0$

Irrotational vector field is also known as conservative force field or potential field.

Problems:

1. Show that $\vec{F} = 3y^4z^2\hat{\imath} + 4x^3z^2\hat{\jmath} + 3x^2y^2\hat{k}$ is solenoidal.

Solution:

Given,
$$\vec{F} = 3y^4 z^2 \hat{\imath} + 4x^3 z^2 \hat{\jmath} + 3x^2 y^2 \hat{k}$$

i.e., $\vec{F} = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$. Where $F_1 = 3y^4 z^2$, $F_2 = 4x^3 z^2$, $F_3 = 3x^2 y^2$.
We have $div\vec{F} = \nabla \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$
 $\therefore div\vec{F} = \frac{\partial}{\partial x}(3y^4 z^2) + \frac{\partial}{\partial y}(4x^3 z^2) + \frac{\partial}{\partial z}(3x^2 y^2) = \mathbf{0} + \mathbf{0} + \mathbf{0} = \mathbf{0}.$

 \therefore Hence \vec{F} is solenoidal.

2. Prove that $\vec{A} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$ is irrotational and find a scalar function f(x, y, z) such that $\vec{A} = \nabla f$.

Solution:

Given $\vec{A} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$. i.e., $\vec{A} = A_1\hat{\imath} + A_2\hat{\jmath} + A_3\hat{k}$. Where $A_1 = 6xy + z^3$, $A_2 = 3x^2 - z$, $A_3 = 3xz^2 - y$.

We have
$$\nabla \times \vec{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_1 & A_2 & A_3 \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 6xy + z^3 & 3x^2 - z & 3xz^2 - y \end{vmatrix}$$

$$\therefore \quad \nabla \times \vec{A} = \hat{\iota}(-1+1) - \hat{j}(3z^2 - 3z^2) + \hat{k}(6x - 6x) = \hat{\iota}(0) - \hat{j}(0) + \hat{k}(0) = 0.$$

 \therefore \vec{A} is irrotational.

Now given $\vec{A} = \nabla f$

$$\therefore \ (6xy+z^3)\hat{\imath}+(3x^2-z)\hat{\jmath}+(3xz^2-y)\hat{k}=\frac{\partial f}{\partial x}\hat{\imath}+\frac{\partial f}{\partial y}\hat{\jmath}+\frac{\partial f}{\partial z}\hat{k}.$$

Comparing on both sides we get,

$$\frac{\partial f}{\partial x} = 6xy + z^3 \dots (1), \quad \frac{\partial f}{\partial y} = 3x^2 - z \dots (2), \quad \frac{\partial f}{\partial z} = 3xz^2 - y \dots (3).$$

Integrating (1) w. r. t. x by treating y and z as constants we get,

$$f = 3x^2y + xz^3 + f_1(y, z)$$
.....(4)

Integrating (2) w. r. t. y by treating x and z as constants we get,

$$f = 3x^2y - yz + f_2(x, z)$$
.....(5)

Integrating (3) w. r. t. y by treating x and y as constants we get,

$$f = xz^3 - yz + f_3(x, y)$$
.....(6)

Using (4), (5) and (6), we write

$$f = 3x^2y + xz^3 - yz$$

3. If
$$\hat{A} = (x + y + az)\hat{i} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$$
 find a and b such that

 $\operatorname{curl} \overrightarrow{A} = \mathbf{0}$ (i.e., \overrightarrow{A} is irrotational).

Solution:

Given
$$\vec{A} = (x + y + az)\hat{i} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$$

i.e., $\vec{A} = A_1\hat{i} + A_2\hat{j} + A_3\hat{k}$.

Where $A_1 = x + y + az$, $A_2 = bx + 2y - z$, $A_3 = x + cy + 2z$.

Given curl
$$\vec{A} = 0$$
. i.e., \vec{A} is irrotational. $\therefore \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_1 & A_2 & A_3 \end{vmatrix} = 0$

$$\therefore \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + y + az & bx + 2y - z & x + cy + 2z \end{vmatrix} = 0$$

$$\therefore \quad \hat{i} \left[\frac{\partial}{\partial y} (x + cy + 2z) - \frac{\partial}{\partial z} (bx + 2y - z) \right] - \hat{j} \left[\frac{\partial}{\partial x} (x + cy + 2z) - \frac{\partial}{\partial z} (x + y + az) + \hat{k} \left[\frac{\partial}{\partial x} (bx + 2y - z) - \frac{\partial}{\partial y} (x + y + az) \right] =$$

- $\therefore \quad [c (-1)]\hat{\iota} [1 a]\hat{\jmath} + [b 1]\hat{k} = 0 = 0\hat{\iota} + 0\hat{\jmath} + 0\hat{k}$
- \therefore c+1=0, a-1=0 and b-1=0
- \therefore a = 1, b = 1 and c = -1.

HOME WORK:

1. Show that the vector $(-x^2 + yz)\hat{i} + (4y - z^2x)\hat{j} + (2xz - 4z)\hat{k}$ is irrotational.

2. Show that $\vec{F} = (y + z)i + (z + x)j + (x + y)k$ is irrotational. Also find a scalar function \emptyset such that $\vec{F} = \nabla \emptyset$.

- 3. Show that $\vec{F} = (2xy^2 + yz)\hat{\iota} + (2x^2y + xz + 2yz^2)\hat{\jmath} + (2y^2z + xy)\hat{k}$ is irrotational. Also find a scalar function \emptyset such that $\vec{F} = \nabla \emptyset$.
- 4. Find the values of the a and b such that

$$\vec{F} = (axy + z^3) \hat{\iota} + (3x^2 - z)\hat{j} + (3bxz^2 - y)\hat{k}$$
 is irrotational.

5. If $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$ and $r = |\vec{r}|$ then prove that $\nabla (r^n \vec{r}) = (n+3)r^n$. Hence Show that $\frac{\vec{r}}{r^3}$ is solenoidal.

VECTOR INTEGRATION:

0

If two vectors $\vec{F}(t)$ and $\vec{G}(t)$ be such that $\frac{d}{dt} [\vec{G}(t)] = \vec{F}(t)$, then $\vec{G}(t)$ is called an integral of $\vec{F}(t)$ w. r. t. scalar variable t and we write $\int \vec{F}(t) dt = \vec{G}(t)$.

If \vec{C} is an arbitrary constant and $\frac{d}{dt} [\vec{G}(t) + \vec{C}] = \vec{F}(t)$, then $\int \vec{F}(t) dt = \vec{G}(t) + \vec{C}$. This integral is called indefinite integral of $\vec{F}(t)$ and its definite integral is

 $\int_a^b \vec{F}(t) dt = \left[\vec{G}(t) + \vec{C}\right]_a^b = \vec{G}(b) - \vec{G}(a).$

Line Integral:

Definition:

An integral which is evaluated along curve is called a line integral.

If $\vec{F} = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$ is a continuous vector point function defined at each point P of a curve C and $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ is the position vector of the point P on the curve C, then $\int_C \vec{F} \cdot d\vec{r} = \int_C F_1 dx + F_2 dy + F_3 dz$ is called line integral of \vec{F} along the curve C.

If C is a closed curve then, integral sign $\int_C is$ replaced by \oint_C .

If \vec{F} represents the force acting along the curve C, then the total work done by \vec{F} is given

by $\int_C \vec{F} d\vec{r}$.

Problems:

1. If $\vec{F} = 3xy\hat{\iota} - y^2\hat{j}$, then evaluate $\int_c \vec{F} \cdot d\vec{r}$, where C is the curve in the xy - plane given by $y = 2x^2$ from (0, 0) to (1, 2).

Solution:

Since the curve C is in the xy – plane, we have z = 0. \therefore We take the position vector of the point P(x, y) as $\vec{r} = x \hat{\iota} + y \hat{j}$ \therefore $d\vec{r} = dx \hat{\iota} + dy \hat{j}$.

Given C is the parabola $y = 2x^2$ from (0, 0) to (1, 2).

 \therefore dy = 4xdx and x varies from 0 to 1. Substituting in equation (1) we get,

$$\int_{c} \vec{F} \cdot d\vec{r} = \int_{c} (3x \cdot 2x^{2} dx - 4x^{4} \cdot 4x dx) = \int_{0}^{1} (6x^{3} dx - 16x^{5} dx)$$
$$= \left[6\frac{x^{4}}{4} - 16\frac{x^{6}}{6} \right]_{0}^{1} = \frac{3}{2} - \frac{8}{3} = -\frac{7}{6}.$$

2. If $\vec{A} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k}$, evaluate $\int_c \vec{A} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1)

along the path x = t, $y = t^2$, $z = t^3$.

Solution:

Given
$$\vec{A} = (3x^2 + 6y)\hat{\imath} - 14yz\hat{\jmath} + 20xz^2\hat{k}$$
, \therefore Take $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$.

$$\therefore d\vec{r} = dx\hat{i} + dy\hat{j} + dz\hat{k} \quad \therefore \vec{A} \cdot d\vec{r} = (3x^2 + 6y)dx - 14yz \, dy + 20xz^2 dz....(1)$$

Given curve C is $x = t$, $y = t^2$, $z = t^3$ from $(0, 0, 0)$ to $(1, 1, 1)$.

 \therefore dx = dt, dy = 2tdt, dz = $3t^2$ dt. Substituting in equation (1) we get,

$$\vec{A} \cdot d\vec{r} = (3t^2 + 6t^2) dt - 14t^2 \cdot t^3 \cdot 2t dt + 20t \cdot t^6 \cdot 3t^2 dt = (9t^2 - 28t^6 + 60t^9) dt$$

When x = y = z = 0, t = 0 and when x = y = z = 1, t = 1.

$$\therefore \quad \int_c \vec{A} \cdot d\vec{r} = \int_0^1 (9t^2 - 28t^6 + 60t^9) dt = \left[9\frac{t^3}{3} - 28\frac{t^7}{7} + 60\frac{t^{10}}{10}\right]_0^1 = 3 - 4 + 6 = 5.$$

3. Find the total work done by the force $\vec{F} = 3xy\hat{\iota} - y\hat{j} + 2zx\hat{k}$ in moving a particle around the circle $x^2 + y^2 = 4$.

Solution:

Total work done by the force \vec{F} is given by $W = \int_c \vec{F} \cdot d\vec{r}$.

Given
$$\vec{F} = 3xy\,\hat{\imath} - y\hat{\jmath} + 2zx\,\hat{k}$$
. \therefore Take $\vec{r} = x\,\hat{\imath} + y\,\hat{\jmath} + z\hat{k}$

 $\therefore d\vec{r} = dx\hat{\imath} + dy\hat{\jmath} + dz\hat{k} \quad \therefore \quad \vec{F}. \ d\vec{r} = 3xydx - y\,dy + 2zx\,dz.....(1)$

The parametric equation of the circle $x^2 + y^2 = 4$ is given by

 $x = 2\cos\theta$, $y = 2\sin\theta$ and z = 0, where $0 \le \theta \le 2\pi$.

 $\therefore \quad dx = -2\sin\theta d\theta, \quad dy = 2\cos\theta d\theta, \quad dz = 0.$ Substituting in equation (1) we get,

- $\vec{F} \cdot d\vec{r} = 3(2\cos\theta)(2\sin\theta)(-2\sin\theta d\theta) (2\sin\theta)(2\cos\theta d\theta) + 0$
- $\therefore \quad \vec{F}. \ d\vec{r} = (-24sin^2\theta cos\theta 4sin\theta cos\theta)d\theta$

$$\therefore \quad \mathbf{W} = \int_c \vec{F} \cdot d\vec{r} = \int_0^{2\pi} (-24\sin^2\theta\cos\theta - 4\sin\theta\cos\theta)d\theta$$

 $\therefore \ \ \mathbf{W} = \left[-24 \ \frac{\sin^3\theta}{3} - 4 \frac{\sin^2\theta}{2}\right]_0^{2\pi} = 0. \quad \ \text{Using} \ \ \int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1}.$

HOME WORK:

1. If $\vec{F} = (5xy - 6x^2)\hat{\imath} + (2y - 4x)\hat{\jmath}$, then evaluate $\int_c \vec{F} \cdot d\vec{r}$, where C is the curve in the xy-plane given by $y = x^3$ from (1, 1) to (2, 8).

- 2. A vector field is given by $\vec{F} = siny\hat{\imath} x(1 + cosy)\hat{\jmath}$. Evaluate the line integral over a circular path given by $x^2 + y^2 = a^2$, z = 0.
- **3**. Find the work done in moving a particle in the force field. $\vec{F} = 3x^2 \hat{\imath} + (2xz y)\hat{\jmath} + z \hat{k}$, along (i) the straight line from (0,0,0) to (2,1,3). (ii) the curve defined by x = 4y,

 $3x^3 = 8z$ from x = 0 to x = 2.

Surface Integral:

The surface integral of a vector function \vec{F} over a surface S is defined as the integral of the normal component of \vec{F} taken over the surface S.

If $\vec{F} = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$ is a vector point function over a surface S and \hat{n} is the outward unit normal to the surface S at a point P, then the surface integral of \vec{F} over S is denoted by $\int_S \vec{F} \cdot \vec{ds} = \int_S \vec{F} \cdot \hat{n} \, ds$. i.e., $\iint_S \vec{F} \cdot \vec{ds} = \iint_S \vec{F} \cdot \hat{n} \, ds$. Where $ds = dx \cdot dy$. Green's Theorem in the plane:

Statement:

If M(x, y) and N(x, y) be two continuous functions of x and y having continuous partial derivatives $\frac{\partial N}{\partial x}$ and $\frac{\partial M}{\partial y}$ in a region R of xy-plane bounded by a closed curve C then, $\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy.$ **Problems on Greens Theorem:**

1. Use Green's Theorem to evaluate $\int_c xy dx + x^2 y^3 dy$, where C is the

triangle with vertices (0,0), (1,0), (1,2) with positive orientation.

Solution:

Here M = xy, N =
$$x^2 y^3$$
 \therefore $\frac{\partial M}{\partial y} = x$ and $\frac{\partial N}{\partial x} = 2xy^3$.

By Green's Theorem, we have,

$$\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy.$$

$$\therefore \quad \int_C xy dx + x^2 y^3 dy = \iint_R (2xy^3 - x) dx dy$$

Equation of the line joining (0,0) and (1,2) is y = 2x. Using

$$(y-y_1) = \frac{(y_2-y_1)}{(x_2-x_1)}(x-x_1).$$

- \therefore x varies from x = 0 to x = 1 and y varies from y = 0 to y = 2x.
- $\therefore \quad \int_c xy dx + x^2 y^3 dy = \int_0^1 \int_0^{2x} (2xy^3 x) dy dx = \int_0^1 \left[\frac{1}{2} xy^4 xy \right]_0^{2x} dx$

$$\therefore \quad \int_c xy dx + x^2 y^3 dy = \int_0^1 (8x^5 - 2x^2) dx = \left[\frac{4}{3}x^6 - \frac{2}{3}x^3\right]_0^1 = \frac{4}{3} - \frac{2}{3} = \frac{2}{3}$$

2. Using Green's theorem to evaluate $\int_c [(y - sinx)dx + cosx dy]$ where C is

the plane triangle enclosed by the lines y = 0, $x = \pi/2$ and $y = 2x/\pi$. Solution:

Here
$$M = y - sinx$$
, $N = cosx$ $\therefore \frac{\partial M}{\partial y} = 1$ and $\frac{\partial N}{\partial x} = -sinx$

By Green's Theorem, we have,

$$\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy.$$

$$\therefore \int_C \left[(y - \sin x) dx + \cos x dy \right] = \iint_R (-\sin x - 1) dy dx$$

Here x varies from x = 0 to $x = \pi/2$ and y varies from y = 0 to $y = 2x/\pi$.

$$\int_{c} [(y - \sin x)dx + \cos x \, dy] = \int_{0}^{\pi/2} \int_{0}^{2x/\pi} (-\sin x - 1)dydx \int_{c} [(y - \sin x)dx + \cos x \, dy] = -\int_{0}^{\pi/2} [\sin x (y) + y]_{0}^{2x/\pi} dx = -\int_{0}^{\pi/2} [(\sin x + 1)y]_{0}^{2x/\pi} dx = -\int_{0}^{\pi/2} [\sin x + 1] [2x/\pi] dx = -\frac{2}{\pi} \int_{0}^{\pi/2} x [\sin x + 1] dx = -\frac{2}{\pi} [x (-\cos x + x) - 1(-\sin x + x^{2}/2)]_{0}^{\pi/2} = -\frac{2}{\pi} \left\{ \frac{\pi}{2} \left(0 + \frac{\pi}{2} \right) - \left(-1 + \frac{\pi^{2}}{8} \right) \right\} = -\frac{2}{\pi} \left\{ \frac{\pi^{2}}{4} + 1 - \frac{\pi^{2}}{8} \right\} = -\frac{2}{\pi} \left\{ 1 + \frac{\pi^{2}}{8} \right\} = -\left(\frac{2}{\pi} + \frac{\pi}{4} \right)$$

3. Apply Green's theorem to evaluate $\int_c [(2x^2 - y^2)dx + (x^2 + y^2) dy]$ where C is the boundary of the area enclosed by the x-axis and the upper half of the circle

$$x^2 + y^2 = a^2$$

Solution:

Here $M = 2x^2 - y^2$, $N = x^2 + y^2$ \therefore $\frac{\partial M}{\partial y} = -2y$ and $\frac{\partial N}{\partial x} = 2x$.

By Green's Theorem, we have, $\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy.$

$$\therefore \int_{c} \left[(2x^{2} - y^{2})dx + (x^{2} + y^{2}) dy \right] = \iint_{R} (2x + 2y)dx \, dy = 2 \iint_{R} (x + y)dx \, dy$$

Here region **R** is the upper half of the circle $x^2 + y^2 = a^2$.

Changing into polar coordinates, we take,

$$x = r \cos \theta$$
, $y = r \sin \theta$. $\therefore dx dy = r dr d\theta$, r varies
from $r = 0$ to $r = a$ and θ varies from $\theta = 0$ to $\theta = \pi$.

$$\therefore \int_{c} \left[(2x^{2} - y^{2})dx + (x^{2} + y^{2}) dy \right] = 2 \int_{0}^{\pi} \int_{0}^{a} (r \cos\theta + r \sin\theta) r dr d\theta$$
$$= 2 \int_{0}^{\pi} \int_{0}^{a} (\cos\theta + \sin\theta) r^{2} dr d\theta = 2 \left[\int_{0}^{\pi} (\cos\theta + \sin\theta) \left[\frac{r^{3}}{3} \right]_{0}^{a} d\theta \right]$$
$$= 2 \left[\int_{0}^{\pi} (\cos\theta + \sin\theta) \left(\frac{a^{3}}{3} \right) d\theta \right] = 2 \left(\frac{a^{3}}{3} \right) [\sin\theta - \cos\theta]_{0}^{\pi}$$
$$= \frac{2a^{3}}{3} \left[(0 + 0) - (-1 - 1) \right] = \frac{4a^{3}}{3}.$$

HOME WORK:

1. Use Green's Theorem to evaluate $\int_c [x^2ydx + x^2dy]$ where C is the boundary described

counter clockwise of triangle with vertices (0,0), (1,0), (1,1).

- 2. Evaluate $\int_c [(xy + y^2)dx + x^2dy]$, where C is bounded by y = x and $y = x^2$, using Green's Theorem.
- 3. If C is a simple closed curve in the xy-plane not enclosing the origin, show that

$$\int_c \vec{F} \cdot \vec{dr} = 0$$
, where $\vec{F} = \frac{y \, \hat{c} - x\hat{j}}{x^2 + y^2}$, using Green's Theorem.

- 4. Using Green's theorem evaluate $\int_c [(3x 8y^2)dx + (4y 6xy) dy]$, where C is the boundary of the region bounded by x = 0, y = 0 and x + y = 1.
- 5. Using Green's theorem evaluate $\int_c [(3x 8y^2)dx + (4y 6xy) dy]$, where C is the boundary of the region bounded by x = 0, y = 0 and x + y = 1.

Stoke's Theorem:

Statement:

If $\vec{F} = f_1 \hat{\imath} + f_2 \hat{\jmath} + f_3 \hat{k}$ is a continuous differential vector point function in the surface S bounded by a simple closed curve C, then $\int_C \vec{F} \cdot d\vec{r} = \iint_S curl\vec{F} \cdot \hat{n}ds$ or $\int_C \vec{F} \cdot d\vec{r} = \iint_S curl\vec{F} \cdot \hat{n}dxdy$. Where \hat{n} is a unit external normal at any point on S. Problems on Stoke's Theorem:

1. Use Stoke's theorem to evaluate $\int_c \vec{F} \cdot d\vec{r}$ where $\vec{F} = y^2 \hat{i} + x^2 \hat{j} - (x+z)\hat{k}$ and

C is the boundary of the triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0). Solution:

Given C is the boundary of the triangle with vertices at (0, 0, 0), (1,0, 0) and (1, 1, 0). Here, z-coordinate of each vertex of the triangle is zero.

 \therefore The triangle lies in the xy- plane and the unit normal vector to the plane is $\hat{n} = \hat{k}$.

$$\therefore curl \vec{F} \cdot \hat{n} = [\hat{j} + 2(\mathbf{x} - \mathbf{y}) \hat{k}] \cdot \hat{k} = 2(\mathbf{x} - \mathbf{y})$$

By Stoke's theorem, we have, $\int_C \vec{F} \cdot d\vec{r} = \iint_S curl\vec{F} \cdot \hat{n}dS$.

 $\therefore \int_c \vec{F} \cdot d\vec{r} = \iint_S 2(x-y) \, dy \, dx.$

The equation of the line joining O(0, 0) and B(1, 1) is y = x.

Using
$$(y - y_1) = \frac{(y_2 - y_1)}{(x_2 - x_1)} (x - x_1).$$

 $\therefore x$ varies from x=0 to x=1 and y varies from y=0 to y=x.

$$\therefore \int_{c} \vec{F} \cdot d\vec{r} = \int_{0}^{1} \int_{0}^{x} 2(x-y) \, dy \, dx = \int_{0}^{1} 2\left[xy - \frac{y^{2}}{2}\right]_{0}^{x} \, dx$$
$$= \int_{0}^{1} 2(x^{2} - \frac{x^{2}}{2}) \, dx = \int_{0}^{1} x^{2} \, dx = \left[\frac{x^{3}}{3}\right]_{0}^{1} = \frac{1}{3}.$$

2. Use Stoke's theorem to evaluate $\int_c [(x+y)dx + (2x-z)dy + (y+z)dz]$

where C is the boundary of the triangle with vertices at (2, 0, 0), (0, 3, 0) and (0, 0, 6). Solution:

Given
$$\vec{F} = (x + y)\hat{\imath} + (2x - z)\hat{\jmath} + (y + z)\hat{k}$$

i.e., $\vec{F} = F_1\hat{\imath} + F_2\hat{\jmath} + F_3\hat{k}$

Where $F_1 = x + y$, $F_2 = 2x - z$, $F_3 = y + z$.

$$\therefore \quad \text{Curl} \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + y & 2x - z & y + z \end{vmatrix}$$

:. Curl
$$\vec{F} = \hat{\iota}(1+1) - \hat{j}(0-0) + \hat{k}(2-1) = 2\hat{\iota} + \hat{k}$$
.

Given C is the boundary of the triangle with vertices at

A(2, 0, 0), B(0, 3, 0) and C(0, 0, 6).

: The equation of the plane passing through A(2, 0, 0), B(0, 3, 0) and C(0, 0, 6) is

$$\frac{x}{2} + \frac{y}{3} + \frac{z}{6} = 1. \quad i. e., 3x + 2y + z = 6$$

Consider $\emptyset = 3x + 2y + z - 6$ \therefore $\nabla \emptyset = \frac{\partial \emptyset}{\partial x}\hat{\iota} + \frac{\partial \emptyset}{\partial y}\hat{j} + \frac{\partial \emptyset}{\partial z}\hat{k} = 3\hat{\iota} + 2\hat{j} + \hat{k}.$

$$\therefore$$
 $|\nabla \phi| = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{14}$

: the unit normal vector to the plane is $\hat{n} = \frac{\nabla \emptyset}{|\nabla \emptyset|} = \frac{(3\hat{\iota}+2\hat{j}+\hat{k})}{\sqrt{14}}$

 $\therefore \quad curl\vec{F}.\,\hat{n} = (2\hat{\imath} + \hat{k}) \cdot \frac{(3\hat{\imath} + 2\hat{\jmath} + \hat{k})}{\sqrt{14}} = \frac{6+0+1}{\sqrt{14}} = \frac{7}{\sqrt{14}}$

By Stoke's theorem, we have, $\int_C \vec{F} \cdot d\vec{r} = \iint_S curl\vec{F} \cdot \hat{n} dS$.

$$\therefore \int_{c} \vec{F} \cdot d\vec{r} = \iint_{S} \frac{7}{\sqrt{14}} dS = \frac{7}{\sqrt{14}} \iint_{S} dS = \frac{7}{\sqrt{14}} \iint_{S} dx \, dy = \frac{7}{\sqrt{14}} (Area of the \triangle ABC)...(1)$$

Now area of the $\triangle ABC = \frac{1}{2} |\vec{AB} \times \vec{AC}|$

Since the vertices of the triangle are A(2, 0, 0), B(0, 3, 0) and C(0, 0, 6), we get, $\overrightarrow{OA} = 2\hat{\imath} + 0\hat{j} + 0\hat{k}, \quad \overrightarrow{OB} = 0\hat{\imath} + 3\hat{j} + 0\hat{k}, \quad \overrightarrow{OC} = 0\hat{\imath} - 0\hat{j} + 6\hat{k}.$ $\therefore \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = -2\hat{\imath} + 3\hat{j} + 0\hat{k} \text{ and } \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = -2\hat{\imath} + 0\hat{j} + 6\hat{k}$ $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{\imath} & \hat{j} & \hat{k} \\ -2 & 3 & 0 \\ -2 & 0 & 6 \end{vmatrix} = \hat{\imath}(18 - 0) - \hat{\jmath}(-12 - 0) + \hat{k}(0 - 6) = 18\hat{\imath} + 12\hat{\jmath} - 6\hat{k}$ $|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(18)^2 + (12)^2 + (-6)^2} = \sqrt{504} = \sqrt{36X14} = 6\sqrt{14}$ $\therefore \text{ Area } \Delta ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} (6\sqrt{14}) = 3\sqrt{14}$

Equation (1) becomes $\int_C \vec{F} \cdot d\vec{r} = \frac{7}{\sqrt{14}} (3\sqrt{14}) = 21.$

3. Apply Stoke's theorem to evaluate $\int_c [y \, dx + z \, dy + x \, dz]$ where C is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a.

Solution:

Given
$$\vec{F} = y\hat{\imath} + z\hat{\jmath} + x\hat{k}$$
. i.e., $\vec{F} = F_1\hat{\imath} + F_2\hat{\jmath} + F_3\hat{k}$

Where $F_1 = y$, $F_2 = z$, $F_3 = x$.

$$\therefore \text{ Curl } \vec{F} = \begin{vmatrix} \hat{\iota} & \hat{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \begin{vmatrix} \hat{\iota} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & x \end{vmatrix}$$
$$= \hat{\iota}(0-1) - \hat{j}(1-0) + \hat{k}(0-1).$$

$$\therefore \quad \text{Curl } \vec{F} = -\hat{\iota} - \hat{\jmath} - \hat{k}.$$

Given C is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a. Therefore the curve C is the circle lies on the plane x + z = a. i.e., x + z - a = 0.

Consider $\phi = x + z - a$.

We have, $\nabla \emptyset = \frac{\partial \emptyset}{\partial x} \hat{\imath} + \frac{\partial \emptyset}{\partial y} \hat{\jmath} + \frac{\partial \emptyset}{\partial z} \hat{k}$

 $\therefore \nabla \emptyset = \hat{\imath} + 0\hat{\jmath} + \hat{k}, \quad \therefore \quad \nabla \emptyset = \hat{\imath} + \hat{k} \quad \therefore \quad |\nabla \emptyset| = \sqrt{1+1} = \sqrt{2}$

 \therefore the unit normal vector to the plane is $\hat{n} = \frac{\nabla \phi}{|\nabla \phi|} = \frac{\hat{\iota} + \hat{k}}{\sqrt{2}}$

 $\therefore \quad curl\vec{F} \cdot \hat{n} = (-\hat{\imath} - \hat{\jmath} - \hat{k}) \cdot \frac{(\hat{\imath} + \hat{k})}{\sqrt{2}} = \frac{(-1 + 0 - 1)}{\sqrt{2}} = \frac{-2}{\sqrt{2}} = -\sqrt{2}$

By Stoke's theorem, we have, $\int_C \vec{F} \cdot d\vec{r} = \iint_S curl\vec{F} \cdot \hat{n} dS$.

 $\therefore \int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} (-\sqrt{2}) \, dS = -\sqrt{2} \iint_{S} \, dS = -\sqrt{2} \, (Area \text{ of the circle}).....(1)$

Now the equation of the plane x + z = a can be written as $\frac{x}{a} + \frac{z}{a} = 1$.

: The points of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a are A(a, 0, 0) and B(0, 0, a).

: Diameter AB of the circle = $\sqrt{(a-0)^2 + (0-0)^2 + (0-a)^2} = \sqrt{a^2 + a^2}$

$$=\sqrt{2a^2}=\sqrt{2}a.$$

 $\therefore \text{ Radius of the circle} = \mathbf{r} = \frac{Diameter}{2} = \frac{\sqrt{2} a}{2} = \frac{a}{\sqrt{2}}$

 $\therefore \text{ Area of the circle} = \pi r^2 = \pi \left(\frac{a}{\sqrt{2}}\right)^2 = \frac{\pi a^2}{2}$

Equation (1) becomes $\int_{C} \vec{F} \cdot d\vec{r} = -\sqrt{2} \left(\frac{\pi a^{2}}{2}\right) = \frac{-\pi a^{2}}{\sqrt{2}}$.

HOME WORK:

- 1. Use Stoke's theorem to evaluate $\int_c \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x^2 + y^2)\hat{\imath} 2xy\hat{\jmath}$ and C is the Rectangle bounded by the lines x = \pm a, y = 0, y = b.
- 2. Use Stoke's theorem to evaluate $\int_c \vec{F} \cdot d\vec{r}$ where $\vec{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ and C is upper half of the surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy-plane.

3. If $\vec{F} = 3y \hat{i} - xz\hat{j} + yz^2 \hat{k}$ and S is the surface of the paraboloid $2z = x^2 + y^2$ bounded by z = 2, evaluate $\iint_{S} (\nabla X \vec{F}) \cdot \vec{ds}$ using Stoke's theorem.

Glance:

- 1. Gradient of $\emptyset(x, y, z) = c$ grad $\emptyset = \nabla \emptyset = \frac{\partial \emptyset}{\partial x} \hat{\imath} + \frac{\partial \emptyset}{\partial y} \hat{\jmath} + \frac{\partial \emptyset}{\partial z} \hat{k}$
- 2. Unit normal vector of $\phi(x, y, z) = c$ $\nabla \phi$

$$\widehat{n} = \frac{\nabla \varphi}{|\nabla \varphi|}$$

3. Directional derivative of \emptyset along $\vec{a} = \nabla \emptyset$. \hat{a}

- **4.** Maximum directional derivative = $|\nabla \emptyset|$
- 5. Angle between the surfaces $\cos \theta = \frac{\nabla \emptyset_1 . \nabla \emptyset_2}{|\nabla \emptyset_1| |\nabla \emptyset_2|}$
- 6. Divergence of a vector $\vec{F} = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$ $div \vec{F} = \nabla \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$
- 7. Solenoidal : $div \vec{F} = \nabla \cdot \vec{F} = 0$
- 8. Curl of vector $\vec{F} = F_1 \hat{\imath} + F_2 \hat{\jmath} + F_3 \hat{k}$ $\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \hat{\imath} & \hat{\imath} & \hat{\imath} \end{vmatrix}$

Curl
$$\vec{F} = \nabla X \vec{F} = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

- 9. Irrotational: Curl $\vec{F} = \nabla X \vec{F} = 0$
- 10. Line integral $\vec{F} = F_1 \hat{\iota} + F_2 \hat{j} + F_3 \hat{k}$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} F_1 dx + F_2 dy + F_3 dz$$

11. By Green's Theorem,

$$\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy.$$

12. By Stoke's theorem,

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} curl\vec{F} \cdot \hat{n}dS = \iint_{S} curl\vec{F} \cdot \hat{n}dxdy$$