

NoSQL	Distilled
A	Brief	Guide	to	the	Emerging	World	of	Polyglot	Persistence

Pramod	J.	Sadalage
Martin	Fowler

Upper	Saddle	River,	NJ	•	Boston	•	Indianapolis	•	San	Francisco
New	York	•	Toronto	•	Montreal	•	London	•	Munich	•	Paris	•	Madrid

Capetown	•	Sydney	•	Tokyo	•	Singapore	•	Mexico	City

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed
as	trademarks.	Where	those	designations	appear	in	this	book,	and	the	publisher	was	aware	of	a
trademark	claim,	the	designations	have	been	printed	with	initial	capital	letters	or	in	all	capitals.

The	authors	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no	expressed	or
implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or	omissions.	No	liability	is
assumed	for	incidental	or	consequential	damages	in	connection	with	or	arising	out	of	the	use	of	the
information	or	programs	contained	herein.

The	publisher	offers	excellent	discounts	on	this	book	when	ordered	in	quantity	for	bulk	purchases	or
special	sales,	which	may	include	electronic	versions	and/or	custom	covers	and	content	particular	to
your	business,	training	goals,	marketing	focus,	and	branding	interests.	For	more	information,	please
contact:

U.S.	Corporate	and	Government	Sales
(800)	382–3419
corpsales@pearsontechgroup.com

For	sales	outside	the	United	States	please	contact:

International	Sales
international@pearson.com

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Cataloging-in-Publication	Data:

Sadalage,	Pramod	J.
		NoSQL	distilled	:	a	brief	guide	to	the	emerging	world	of	polyglot
persistence	/	Pramod	J	Sadalage,	Martin	Fowler.
					p.	cm.
		Includes	bibliographical	references	and	index.
		ISBN	978-0-321-82662-6	(pbk.	:	alk.	paper)	--	ISBN	0-321-82662-0	(pbk.	:
alk.	paper)		1.		Databases--Technological	innovations.	2.		Information
storage	and	retrieval	systems.		I.	Fowler,	Martin,	1963-	II.	Title.
		QA76.9.D32S228	2013
		005.74--dc23

Copyright	©	2013	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected	by
copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited	reproduction,
storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	To	obtain	permission	to	use	material	from	this	work,	please
submit	a	written	request	to	Pearson	Education,	Inc.,	Permissions	Department,	One	Lake	Street,	Upper
Saddle	River,	New	Jersey	07458,	or	you	may	fax	your	request	to	(201)	236–3290.

ISBN-13:	978-0-321-82662-6
ISBN-10:								0-321-82662-0
Text	printed	in	the	United	States	on	recycled	paper	at	RR	Donnelley	in	Crawfordsville,	Indiana.
First	printing,	August	2012

mailto:corpsales@pearsontechgroup.com
mailto:international@pearson.com
http://informit.com/aw

For	my	teachers	Gajanan	Chinchwadkar,
Dattatraya	Mhaskar,	and	Arvind	Parchure.	You

inspired	me	the	most,	thank	you.
—Pramod

For	Cindy
—Martin

Contents

Preface

Part	I:	Understand

Chapter	1:	Why	NoSQL?
1.1	The	Value	of	Relational	Databases

1.1.1	Getting	at	Persistent	Data
1.1.2	Concurrency
1.1.3	Integration
1.1.4	A	(Mostly)	Standard	Model

1.2	Impedance	Mismatch
1.3	Application	and	Integration	Databases
1.4	Attack	of	the	Clusters
1.5	The	Emergence	of	NoSQL
1.6	Key	Points

Chapter	2:	Aggregate	Data	Models
2.1	Aggregates

2.1.1	Example	of	Relations	and	Aggregates
2.1.2	Consequences	of	Aggregate	Orientation

2.2	Key-Value	and	Document	Data	Models
2.3	Column-Family	Stores
2.4	Summarizing	Aggregate-Oriented	Databases
2.5	Further	Reading
2.6	Key	Points

Chapter	3:	More	Details	on	Data	Models
3.1	Relationships
3.2	Graph	Databases
3.3	Schemaless	Databases
3.4	Materialized	Views
3.5	Modeling	for	Data	Access
3.6	Key	Points

Chapter	4:	Distribution	Models
4.1	Single	Server
4.2	Sharding
4.3	Master-Slave	Replication
4.4	Peer-to-Peer	Replication

4.5	Combining	Sharding	and	Replication
4.6	Key	Points

Chapter	5:	Consistency
5.1	Update	Consistency
5.2	Read	Consistency
5.3	Relaxing	Consistency

5.3.1	The	CAP	Theorem
5.4	Relaxing	Durability
5.5	Quorums
5.6	Further	Reading
5.7	Key	Points

Chapter	6:	Version	Stamps
6.1	Business	and	System	Transactions
6.2	Version	Stamps	on	Multiple	Nodes
6.3	Key	Points

Chapter	7:	Map-Reduce
7.1	Basic	Map-Reduce
7.2	Partitioning	and	Combining
7.3	Composing	Map-Reduce	Calculations

7.3.1	A	Two	Stage	Map-Reduce	Example
7.3.2	Incremental	Map-Reduce

7.4	Further	Reading
7.5	Key	Points

Part	II:	Implement

Chapter	8:	Key-Value	Databases
8.1	What	Is	a	Key-Value	Store
8.2	Key-Value	Store	Features

8.2.1	Consistency
8.2.2	Transactions
8.2.3	Query	Features
8.2.4	Structure	of	Data
8.2.5	Scaling

8.3	Suitable	Use	Cases
8.3.1	Storing	Session	Information
8.3.2	User	Profiles,	Preferences
8.3.3	Shopping	Cart	Data

8.4	When	Not	to	Use
8.4.1	Relationships	among	Data
8.4.2	Multioperation	Transactions
8.4.3	Query	by	Data
8.4.4	Operations	by	Sets

Chapter	9:	Document	Databases
9.1	What	Is	a	Document	Database?
9.2	Features

9.2.1	Consistency
9.2.2	Transactions
9.2.3	Availability
9.2.4	Query	Features
9.2.5	Scaling

9.3	Suitable	Use	Cases
9.3.1	Event	Logging
9.3.2	Content	Management	Systems,	Blogging	Platforms
9.3.3	Web	Analytics	or	Real-Time	Analytics
9.3.4	E-Commerce	Applications

9.4	When	Not	to	Use
9.4.1	Complex	Transactions	Spanning	Different	Operations
9.4.2	Queries	against	Varying	Aggregate	Structure

Chapter	10:	Column-Family	Stores
10.1	What	Is	a	Column-Family	Data	Store?
10.2	Features

10.2.1	Consistency
10.2.2	Transactions
10.2.3	Availability
10.2.4	Query	Features
10.2.5	Scaling

10.3	Suitable	Use	Cases
10.3.1	Event	Logging
10.3.2	Content	Management	Systems,	Blogging	Platforms
10.3.3	Counters
10.3.4	Expiring	Usage

10.4	When	Not	to	Use

Chapter	11:	Graph	Databases
11.1	What	Is	a	Graph	Database?

11.2	Features
11.2.1	Consistency
11.2.2	Transactions
11.2.3	Availability
11.2.4	Query	Features
11.2.5	Scaling

11.3	Suitable	Use	Cases
11.3.1	Connected	Data
11.3.2	Routing,	Dispatch,	and	Location-Based	Services
11.3.3	Recommendation	Engines

11.4	When	Not	to	Use

Chapter	12:	Schema	Migrations
12.1	Schema	Changes
12.2	Schema	Changes	in	RDBMS

12.2.1	Migrations	for	Green	Field	Projects
12.2.2	Migrations	in	Legacy	Projects

12.3	Schema	Changes	in	a	NoSQL	Data	Store
12.3.1	Incremental	Migration
12.3.2	Migrations	in	Graph	Databases
12.3.3	Changing	Aggregate	Structure

12.4	Further	Reading
12.5	Key	Points

Chapter	13:	Polyglot	Persistence
13.1	Disparate	Data	Storage	Needs
13.2	Polyglot	Data	Store	Usage
13.3	Service	Usage	over	Direct	Data	Store	Usage
13.4	Expanding	for	Better	Functionality
13.5	Choosing	the	Right	Technology
13.6	Enterprise	Concerns	with	Polyglot	Persistence
13.7	Deployment	Complexity
13.8	Key	Points

Chapter	14:	Beyond	NoSQL
14.1	File	Systems
14.2	Event	Sourcing
14.3	Memory	Image
14.4	Version	Control
14.5	XML	Databases

14.6	Object	Databases
14.7	Key	Points

Chapter	15:	Choosing	Your	Database
15.1	Programmer	Productivity
15.2	Data-Access	Performance
15.3	Sticking	with	the	Default
15.4	Hedging	Your	Bets
15.5	Key	Points
15.6	Final	Thoughts

Bibliography

Index

Preface

We’ve	spent	some	twenty	years	in	the	world	of	enterprise	computing.	We’ve	seen	many	things	change
in	languages,	architectures,	platforms,	and	processes.	But	through	all	this	time	one	thing	has	stayed
constant—relational	databases	store	the	data.	There	have	been	challengers,	some	of	which	have	had
success	in	some	niches,	but	on	the	whole	the	data	storage	question	for	architects	has	been	the	question
of	which	relational	database	to	use.
There	is	a	lot	of	value	in	the	stability	of	this	reign.	An	organization’s	data	lasts	much	longer	that	its

programs	(at	least	that’s	what	people	tell	us—we’ve	seen	plenty	of	very	old	programs	out	there).	It’s
valuable	to	have	a	stable	data	storage	that’s	well	understood	and	accessible	from	many	application
programming	platforms.
Now,	however,	there’s	a	new	challenger	on	the	block	under	the	confrontational	tag	of	NoSQL.	It’s

born	out	of	a	need	to	handle	larger	data	volumes	which	forced	a	fundamental	shift	to	building	large
hardware	platforms	through	clusters	of	commodity	servers.	This	need	has	also	raised	long-running
concerns	about	the	difficulties	of	making	application	code	play	well	with	the	relational	data	model.
The	term	“NoSQL”	is	very	ill-defined.	It’s	generally	applied	to	a	number	of	recent	nonrelational

databases	such	as	Cassandra,	Mongo,	Neo4J,	and	Riak.	They	embrace	schemaless	data,	run	on
clusters,	and	have	the	ability	to	trade	off	traditional	consistency	for	other	useful	properties.	Advocates
of	NoSQL	databases	claim	that	they	can	build	systems	that	are	more	performant,	scale	much	better,
and	are	easier	to	program	with.
Is	this	the	first	rattle	of	the	death	knell	for	relational	databases,	or	yet	another	pretender	to	the

throne?	Our	answer	to	that	is	“neither.”	Relational	databases	are	a	powerful	tool	that	we	expect	to	be
using	for	many	more	decades,	but	we	do	see	a	profound	change	in	that	relational	databases	won’t	be
the	only	databases	in	use.	Our	view	is	that	we	are	entering	a	world	of	Polyglot	Persistence	where
enterprises,	and	even	individual	applications,	use	multiple	technologies	for	data	management.	As	a
result,	architects	will	need	to	be	familiar	with	these	technologies	and	be	able	to	evaluate	which	ones	to
use	for	differing	needs.	Had	we	not	thought	that,	we	wouldn’t	have	spent	the	time	and	effort	writing
this	book.
This	book	seeks	to	give	you	enough	information	to	answer	the	question	of	whether	NoSQL

databases	are	worth	serious	consideration	for	your	future	projects.	Every	project	is	different,	and
there’s	no	way	we	can	write	a	simple	decision	tree	to	choose	the	right	data	store.	Instead,	what	we	are
attempting	here	is	to	provide	you	with	enough	background	on	how	NoSQL	databases	work,	so	that
you	can	make	those	judgments	yourself	without	having	to	trawl	the	whole	web.	We’ve	deliberately
made	this	a	small	book,	so	you	can	get	this	overview	pretty	quickly.	It	won’t	answer	your	questions
definitively,	but	it	should	narrow	down	the	range	of	options	you	have	to	consider	and	help	you
understand	what	questions	you	need	to	ask.

Why	Are	NoSQL	Databases	Interesting?
We	see	two	primary	reasons	why	people	consider	using	a	NoSQL	database.

•	Application	development	productivity.	A	lot	of	application	development	effort	is	spent	on
mapping	data	between	in-memory	data	structures	and	a	relational	database.	A	NoSQL	database
may	provide	a	data	model	that	better	fits	the	application’s	needs,	thus	simplifying	that
interaction	and	resulting	in	less	code	to	write,	debug,	and	evolve.

•	Large-scale	data.	Organizations	are	finding	it	valuable	to	capture	more	data	and	process	it

more	quickly.	They	are	finding	it	expensive,	if	even	possible,	to	do	so	with	relational	databases.
The	primary	reason	is	that	a	relational	database	is	designed	to	run	on	a	single	machine,	but	it	is
usually	more	economic	to	run	large	data	and	computing	loads	on	clusters	of	many	smaller	and
cheaper	machines.	Many	NoSQL	databases	are	designed	explicitly	to	run	on	clusters,	so	they
make	a	better	fit	for	big	data	scenarios.

What’s	in	the	Book
We’ve	broken	this	book	up	into	two	parts.	The	first	part	concentrates	on	core	concepts	that	we	think
you	need	to	know	in	order	to	judge	whether	NoSQL	databases	are	relevant	for	you	and	how	they
differ.	In	the	second	part	we	concentrate	more	on	implementing	systems	with	NoSQL	databases.
Chapter	1	begins	by	explaining	why	NoSQL	has	had	such	a	rapid	rise—the	need	to	process	larger

data	volumes	led	to	a	shift,	in	large	systems,	from	scaling	vertically	to	scaling	horizontally	on
clusters.	This	explains	an	important	feature	of	the	data	model	of	many	NoSQL	databases—the	explicit
storage	of	a	rich	structure	of	closely	related	data	that	is	accessed	as	a	unit.	In	this	book	we	call	this
kind	of	structure	an	aggregate.
Chapter	2	describes	how	aggregates	manifest	themselves	in	three	of	the	main	data	models	in

NoSQL	land:	key-value	(“Key-Value	and	Document	Data	Models,”	p.	20),	document	(“Key-Value	and
Document	Data	Models,”	p.	20),	and	column	family	(“Column-Family	Stores,”	p.	21)	databases.
Aggregates	provide	a	natural	unit	of	interaction	for	many	kinds	of	applications,	which	both	improves
running	on	a	cluster	and	makes	it	easier	to	program	the	data	access.	Chapter	3	shifts	to	the	downside
of	aggregates—the	difficulty	of	handling	relationships	(“Relationships,”	p.	25)	between	entities	in
different	aggregates.	This	leads	us	naturally	to	graph	databases	(“Graph	Databases,”	p.	26),	a	NoSQL
data	model	that	doesn’t	fit	into	the	aggregate-oriented	camp.	We	also	look	at	the	common
characteristic	of	NoSQL	databases	that	operate	without	a	schema	(“Schemaless	Databases,”	p.	28)—a
feature	that	provides	some	greater	flexibility,	but	not	as	much	as	you	might	first	think.
Having	covered	the	data-modeling	aspect	of	NoSQL,	we	move	on	to	distribution:	Chapter	4

describes	how	databases	distribute	data	to	run	on	clusters.	This	breaks	down	into	sharding
(“Sharding,”	p.	38)	and	replication,	the	latter	being	either	master-slave	(“Master-Slave	Replication,”
p.	40)	or	peer-to-peer	(“Peer-to-Peer	Replication,”	p.	42)	replication.	With	the	distribution	models
defined,	we	can	then	move	on	to	the	issue	of	consistency.	NoSQL	databases	provide	a	more	varied
range	of	consistency	options	than	relational	databases—which	is	a	consequence	of	being	friendly	to
clusters.	So	Chapter	5	talks	about	how	consistency	changes	for	updates	(“Update	Consistency,”	p.	47)
and	reads	(“Read	Consistency,”	p.	49),	the	role	of	quorums	(“Quorums,”	p.	57),	and	how	even	some
durability	(“Relaxing	Durability,”	p.	56)	can	be	traded	off.	If	you’ve	heard	anything	about	NoSQL,
you’ll	almost	certainly	have	heard	of	the	CAP	theorem;	the	“The	CAP	Theorem”	section	on	p.	53
explains	what	it	is	and	how	it	fits	in.
While	these	chapters	concentrate	primarily	on	the	principles	of	how	data	gets	distributed	and	kept

consistent,	the	next	two	chapters	talk	about	a	couple	of	important	tools	that	make	this	work.	Chapter	6
describes	version	stamps,	which	are	for	keeping	track	of	changes	and	detecting	inconsistencies.
Chapter	7	outlines	map-reduce,	which	is	a	particular	way	of	organizing	parallel	computation	that	fits
in	well	with	clusters	and	thus	with	NoSQL	systems.
Once	we’re	done	with	concepts,	we	move	to	implementation	issues	by	looking	at	some	example

databases	under	the	four	key	categories:	Chapter	8	uses	Riak	as	an	example	of	key-value	databases,
Chapter	9	takes	MongoDB	as	an	example	for	document	databases,	Chapter	10	chooses	Cassandra	to
explore	column-family	databases,	and	finally	Chapter	11	plucks	Neo4J	as	an	example	of	graph

databases.	We	must	stress	that	this	is	not	a	comprehensive	study—there	are	too	many	out	there	to	write
about,	let	alone	for	us	to	try.	Nor	does	our	choice	of	examples	imply	any	recommendations.	Our	aim
here	is	to	give	you	a	feel	for	the	variety	of	stores	that	exist	and	for	how	different	database
technologies	use	the	concepts	we	outlined	earlier.	You’ll	see	what	kind	of	code	you	need	to	write	to
program	against	these	systems	and	get	a	glimpse	of	the	mindset	you’ll	need	to	use	them.
A	common	statement	about	NoSQL	databases	is	that	since	they	have	no	schema,	there	is	no

difficulty	in	changing	the	structure	of	data	during	the	life	of	an	application.	We	disagree—a
schemaless	database	still	has	an	implicit	schema	that	needs	change	discipline	when	you	implement	it,
so	Chapter	12	explains	how	to	do	data	migration	both	for	strong	schemas	and	for	schemaless
systems.
All	of	this	should	make	it	clear	that	NoSQL	is	not	a	single	thing,	nor	is	it	something	that	will

replace	relational	databases.	Chapter	13	looks	at	this	future	world	of	Polyglot	Persistence,	where
multiple	data-storage	worlds	coexist,	even	within	the	same	application.	Chapter	14	then	expands	our
horizons	beyond	this	book,	considering	other	technologies	that	we	haven’t	covered	that	may	also	be	a
part	of	this	polyglot-persistent	world.
With	all	of	this	information,	you	are	finally	at	a	point	where	you	can	make	a	choice	of	what	data

storage	technologies	to	use,	so	our	final	chapter	(Chapter	15,	“Choosing	Your	Database,”	p.	147)
offers	some	advice	on	how	to	think	about	these	choices.	In	our	view,	there	are	two	key	factors—
finding	a	productive	programming	model	where	the	data	storage	model	is	well	aligned	to	your
application,	and	ensuring	that	you	can	get	the	data	access	performance	and	resilience	you	need.	Since
this	is	early	days	in	the	NoSQL	life	story,	we’re	afraid	that	we	don’t	have	a	well-defined	procedure	to
follow,	and	you’ll	need	to	test	your	options	in	the	context	of	your	needs.
This	is	a	brief	overview—we’ve	been	very	deliberate	in	limiting	the	size	of	this	book.	We’ve

selected	the	information	we	think	is	the	most	important—so	that	you	don’t	have	to.	If	you	are	going	to
seriously	investigate	these	technologies,	you’ll	need	to	go	further	than	what	we	cover	here,	but	we
hope	this	book	provides	a	good	context	to	start	you	on	your	way.
We	also	need	to	stress	that	this	is	a	very	volatile	field	of	the	computer	industry.	Important	aspects	of

these	stores	are	changing	every	year—new	features,	new	databases.	We’ve	made	a	strong	effort	to
focus	on	concepts,	which	we	think	will	be	valuable	to	understand	even	as	the	underlying	technology
changes.	We’re	pretty	confident	that	most	of	what	we	say	will	have	this	longevity,	but	absolutely	sure
that	not	all	of	it	will.

Who	Should	Read	This	Book
Our	target	audience	for	this	book	is	people	who	are	considering	using	some	form	of	a	NoSQL
database.	This	may	be	for	a	new	project,	or	because	they	are	hitting	barriers	that	are	suggesting	a	shift
on	an	existing	project.
Our	aim	is	to	give	you	enough	information	to	know	whether	NoSQL	technology	makes	sense	for

your	needs,	and	if	so	which	tool	to	explore	in	more	depth.	Our	primary	imagined	audience	is	an
architect	or	technical	lead,	but	we	think	this	book	is	also	valuable	for	people	involved	in	software
management	who	want	to	get	an	overview	of	this	new	technology.	We	also	think	that	if	you’re	a
developer	who	wants	an	overview	of	this	technology,	this	book	will	be	a	good	starting	point.
We	don’t	go	into	the	details	of	programming	and	deploying	specific	databases	here—we	leave	that

for	specialist	books.	We’ve	also	been	very	firm	on	a	page	limit,	to	keep	this	book	a	brief	introduction.
This	is	the	kind	of	book	we	think	you	should	be	able	to	read	on	a	plane	flight:	It	won’t	answer	all	your
questions	but	should	give	you	a	good	set	of	questions	to	ask.

If	you’ve	already	delved	into	the	world	of	NoSQL,	this	book	probably	won’t	commit	any	new
items	to	your	store	of	knowledge.	However,	it	may	still	be	useful	by	helping	you	explain	what	you’ve
learned	to	others.	Making	sense	of	the	issues	around	NoSQL	is	important—particularly	if	you’re
trying	to	persuade	someone	to	consider	using	NoSQL	in	a	project.

What	Are	the	Databases
In	this	book,	we’ve	followed	a	common	approach	of	categorizing	NoSQL	databases	according	to
their	data	model.	Here	is	a	table	of	the	four	data	models	and	some	of	the	databases	that	fit	each	model.
This	is	not	a	comprehensive	list—it	only	mentions	the	more	common	databases	we’ve	come	across.
At	the	time	of	writing,	you	can	find	more	comprehensive	lists	at	http://nosql-database.org	and
http://nosql.mypopescu.com/kb/nosql.	For	each	category,	we	mark	with	italics	the	database	we	use	as
an	example	in	the	relevant	chapter.
Our	goal	is	to	pick	a	representative	tool	from	each	of	the	categories	of	the	databases.	While	we	talk

about	specific	examples,	most	of	the	discussion	should	apply	to	the	entire	category,	even	though	these
products	are	unique	and	cannot	be	generalized	as	such.	We	will	pick	one	database	for	each	of	the	key-
value,	document,	column	family,	and	graph	databases;	where	appropriate,	we	will	mention	other
products	that	may	fulfill	a	specific	feature	need.

This	classification	by	data	model	is	useful,	but	crude.	The	lines	between	the	different	data	models,
such	as	the	distinction	between	key-value	and	document	databases	(“Key-Value	and	Document	Data
Models,”	p.	20),	are	often	blurry.	Many	databases	don’t	fit	cleanly	into	categories;	for	example,

http://nosql-database.org
http://nosql.mypopescu.com/kb/nosql

OrientDB	calls	itself	both	a	document	database	and	a	graph	database.

Acknowledgments
Our	first	thanks	go	to	our	colleagues	at	ThoughtWorks,	many	of	whom	have	been	applying	NoSQL
to	our	delivery	projects	over	the	last	couple	of	years.	Their	experiences	have	been	a	primary	source
both	of	our	motivation	in	writing	this	book	and	of	practical	information	on	the	value	of	this
technology.	The	positive	experience	we’ve	had	so	far	with	NoSQL	data	stores	is	the	basis	of	our	view
that	this	is	an	important	technology	and	a	significant	shift	in	data	storage.
We’d	also	like	to	thank	various	groups	who	have	given	public	talks,	published	articles,	and	blogs

on	their	use	of	NoSQL.	Much	progress	in	software	development	gets	hidden	when	people	don’t	share
with	their	peers	what	they’ve	learned.	Particular	thanks	here	go	to	Google	and	Amazon	whose	papers
on	Bigtable	and	Dynamo	were	very	influential	in	getting	the	NoSQL	movement	going.	We	also	thank
companies	that	have	sponsored	and	contributed	to	the	open-source	development	of	NoSQL	databases.
An	interesting	difference	with	previous	shifts	in	data	storage	is	the	degree	to	which	the	NoSQL
movement	is	rooted	in	open-source	work.
Particular	thanks	go	to	ThoughtWorks	for	giving	us	the	time	to	work	on	this	book.	We	joined

ThoughtWorks	at	around	the	same	time	and	have	been	here	for	over	a	decade.	ThoughtWorks
continues	to	be	a	very	hospitable	home	for	us,	a	source	of	knowledge	and	practice,	and	a	welcome
environment	of	openly	sharing	what	we	learn—so	different	from	the	traditional	systems	delivery
organizations.
Bethany	Anders-Beck,	Ilias	Bartolini,	Tim	Berglund,	Duncan	Craig,	Paul	Duvall,	Oren	Eini,	Perryn

Fowler,	Michael	Hunger,	Eric	Kascic,	Joshua	Kerievsky,	Anand	Krishnaswamy,	Bobby	Norton,	Ade
Oshineye,	Thiyagu	Palanisamy,	Prasanna	Pendse,	Dan	Pritchett,	David	Rice,	Mike	Roberts,	Marko
Rodriquez,	Andrew	Slocum,	Toby	Tripp,	Steve	Vinoski,	Dean	Wampler,	Jim	Webber,	and	Wee
Witthawaskul	reviewed	early	drafts	of	this	book	and	helped	us	improve	it	with	their	advice.
Additionally,	Pramod	would	like	to	thank	Schaumburg	Library	for	providing	great	service	and

quiet	space	for	writing;	Arhana	and	Arula,	my	beautiful	daughters,	for	their	understanding	that	daddy
would	go	to	the	library	and	not	take	them	along;	Rupali,	my	beloved	wife,	for	her	immense	support
and	help	in	keeping	me	focused.

Part	I:	Understand

Chapter	1.	Why	NoSQL?

For	almost	as	long	as	we’ve	been	in	the	software	profession,	relational	databases	have	been	the
default	choice	for	serious	data	storage,	especially	in	the	world	of	enterprise	applications.	If	you’re	an
architect	starting	a	new	project,	your	only	choice	is	likely	to	be	which	relational	database	to	use.	(And
often	not	even	that,	if	your	company	has	a	dominant	vendor.)	There	have	been	times	when	a	database
technology	threatened	to	take	a	piece	of	the	action,	such	as	object	databases	in	the	1990’s,	but	these
alternatives	never	got	anywhere.
After	such	a	long	period	of	dominance,	the	current	excitement	about	NoSQL	databases	comes	as	a

surprise.	In	this	chapter	we’ll	explore	why	relational	databases	became	so	dominant,	and	why	we	think
the	current	rise	of	NoSQL	databases	isn’t	a	flash	in	the	pan.

1.1.	The	Value	of	Relational	Databases
Relational	databases	have	become	such	an	embedded	part	of	our	computing	culture	that	it’s	easy	to
take	them	for	granted.	It’s	therefore	useful	to	revisit	the	benefits	they	provide.

1.1.1.	Getting	at	Persistent	Data
Probably	the	most	obvious	value	of	a	database	is	keeping	large	amounts	of	persistent	data.	Most
computer	architectures	have	the	notion	of	two	areas	of	memory:	a	fast	volatile	“main	memory”	and	a
larger	but	slower	“backing	store.”	Main	memory	is	both	limited	in	space	and	loses	all	data	when	you
lose	power	or	something	bad	happens	to	the	operating	system.	Therefore,	to	keep	data	around,	we
write	it	to	a	backing	store,	commonly	seen	a	disk	(although	these	days	that	disk	can	be	persistent
memory).
The	backing	store	can	be	organized	in	all	sorts	of	ways.	For	many	productivity	applications	(such

as	word	processors),	it’s	a	file	in	the	file	system	of	the	operating	system.	For	most	enterprise
applications,	however,	the	backing	store	is	a	database.	The	database	allows	more	flexibility	than	a	file
system	in	storing	large	amounts	of	data	in	a	way	that	allows	an	application	program	to	get	at	small
bits	of	that	information	quickly	and	easily.

1.1.2.	Concurrency
Enterprise	applications	tend	to	have	many	people	looking	at	the	same	body	of	data	at	once,	possibly
modifying	that	data.	Most	of	the	time	they	are	working	on	different	areas	of	that	data,	but	occasionally
they	operate	on	the	same	bit	of	data.	As	a	result,	we	have	to	worry	about	coordinating	these
interactions	to	avoid	such	things	as	double	booking	of	hotel	rooms.
Concurrency	is	notoriously	difficult	to	get	right,	with	all	sorts	of	errors	that	can	trap	even	the	most

careful	programmers.	Since	enterprise	applications	can	have	lots	of	users	and	other	systems	all
working	concurrently,	there’s	a	lot	of	room	for	bad	things	to	happen.	Relational	databases	help
handle	this	by	controlling	all	access	to	their	data	through	transactions.	While	this	isn’t	a	cure-all	(you
still	have	to	handle	a	transactional	error	when	you	try	to	book	a	room	that’s	just	gone),	the
transactional	mechanism	has	worked	well	to	contain	the	complexity	of	concurrency.
Transactions	also	play	a	role	in	error	handling.	With	transactions,	you	can	make	a	change,	and	if	an

error	occurs	during	the	processing	of	the	change	you	can	roll	back	the	transaction	to	clean	things	up.

1.1.3.	Integration
Enterprise	applications	live	in	a	rich	ecosystem	that	requires	multiple	applications,	written	by

different	teams,	to	collaborate	in	order	to	get	things	done.	This	kind	of	inter-application
collaboration	is	awkward	because	it	means	pushing	the	human	organizational	boundaries.
Applications	often	need	to	use	the	same	data	and	updates	made	through	one	application	have	to	be
visible	to	others.
A	common	way	to	do	this	is	shared	database	integration	[Hohpe	and	Woolf]	where	multiple

applications	store	their	data	in	a	single	database.	Using	a	single	database	allows	all	the	applications	to
use	each	others’	data	easily,	while	the	database’s	concurrency	control	handles	multiple	applications	in
the	same	way	as	it	handles	multiple	users	in	a	single	application.

1.1.4.	A	(Mostly)	Standard	Model
Relational	databases	have	succeeded	because	they	provide	the	core	benefits	we	outlined	earlier	in	a
(mostly)	standard	way.	As	a	result,	developers	and	database	professionals	can	learn	the	basic
relational	model	and	apply	it	in	many	projects.	Although	there	are	differences	between	different
relational	databases,	the	core	mechanisms	remain	the	same:	Different	vendors’	SQL	dialects	are
similar,	transactions	operate	in	mostly	the	same	way.

1.2.	Impedance	Mismatch
Relational	databases	provide	many	advantages,	but	they	are	by	no	means	perfect.	Even	from	their
early	days,	there	have	been	lots	of	frustrations	with	them.
For	application	developers,	the	biggest	frustration	has	been	what’s	commonly	called	the	impedance

mismatch:	the	difference	between	the	relational	model	and	the	in-memory	data	structures.	The
relational	data	model	organizes	data	into	a	structure	of	tables	and	rows,	or	more	properly,	relations
and	tuples.	In	the	relational	model,	a	tuple	is	a	set	of	name-value	pairs	and	a	relation	is	a	set	of	tuples.
(The	relational	definition	of	a	tuple	is	slightly	different	from	that	in	mathematics	and	many
programming	languages	with	a	tuple	data	type,	where	a	tuple	is	a	sequence	of	values.)	All	operations
in	SQL	consume	and	return	relations,	which	leads	to	the	mathematically	elegant	relational	algebra.
This	foundation	on	relations	provides	a	certain	elegance	and	simplicity,	but	it	also	introduces

limitations.	In	particular,	the	values	in	a	relational	tuple	have	to	be	simple—they	cannot	contain	any
structure,	such	as	a	nested	record	or	a	list.	This	limitation	isn’t	true	for	in-memory	data	structures,
which	can	take	on	much	richer	structures	than	relations.	As	a	result,	if	you	want	to	use	a	richer	in-
memory	data	structure,	you	have	to	translate	it	to	a	relational	representation	to	store	it	on	disk.	Hence
the	impedance	mismatch—two	different	representations	that	require	translation	(see	Figure	1.1).

Figure	1.1.	An	order,	which	looks	like	a	single	aggregate	structure	in	the	UI,	is	split	into	many
rows	from	many	tables	in	a	relational	database

The	impedance	mismatch	is	a	major	source	of	frustration	to	application	developers,	and	in	the
1990s	many	people	believed	that	it	would	lead	to	relational	databases	being	replaced	with	databases
that	replicate	the	in-memory	data	structures	to	disk.	That	decade	was	marked	with	the	growth	of
object-oriented	programming	languages,	and	with	them	came	object-oriented	databases—both
looking	to	be	the	dominant	environment	for	software	development	in	the	new	millennium.
However,	while	object-oriented	languages	succeeded	in	becoming	the	major	force	in

programming,	object-oriented	databases	faded	into	obscurity.	Relational	databases	saw	off	the
challenge	by	stressing	their	role	as	an	integration	mechanism,	supported	by	a	mostly	standard
language	of	data	manipulation	(SQL)	and	a	growing	professional	divide	between	application
developers	and	database	administrators.
Impedance	mismatch	has	been	made	much	easier	to	deal	with	by	the	wide	availability	of	object-

relational	mapping	frameworks,	such	as	Hibernate	and	iBATIS	that	implement	well-known	mapping
patterns	[Fowler	PoEAA],	but	the	mapping	problem	is	still	an	issue.	Object-relational	mapping
frameworks	remove	a	lot	of	grunt	work,	but	can	become	a	problem	of	their	own	when	people	try	too
hard	to	ignore	the	database	and	query	performance	suffers.
Relational	databases	continued	to	dominate	the	enterprise	computing	world	in	the	2000s,	but	during

that	decade	cracks	began	to	open	in	their	dominance.

1.3.	Application	and	Integration	Databases
The	exact	reasons	why	relational	databases	triumphed	over	OO	databases	are	still	the	subject	of	an
occasional	pub	debate	for	developers	of	a	certain	age.	But	in	our	view,	the	primary	factor	was	the
role	of	SQL	as	an	integration	mechanism	between	applications.	In	this	scenario,	the	database	acts	as
an	integration	database—with	multiple	applications,	usually	developed	by	separate	teams,	storing

their	data	in	a	common	database.	This	improves	communication	because	all	the	applications	are
operating	on	a	consistent	set	of	persistent	data.
There	are	downsides	to	shared	database	integration.	A	structure	that’s	designed	to	integrate	many

applications	ends	up	being	more	complex—indeed,	often	dramatically	more	complex—than	any
single	application	needs.	Furthermore,	should	an	application	want	to	make	changes	to	its	data	storage,
it	needs	to	coordinate	with	all	the	other	applications	using	the	database.	Different	applications	have
different	structural	and	performance	needs,	so	an	index	required	by	one	application	may	cause	a
problematic	hit	on	inserts	for	another.	The	fact	that	each	application	is	usually	a	separate	team	also
means	that	the	database	usually	cannot	trust	applications	to	update	the	data	in	a	way	that	preserves
database	integrity	and	thus	needs	to	take	responsibility	for	that	within	the	database	itself.
A	different	approach	is	to	treat	your	database	as	an	application	database—which	is	only	directly

accessed	by	a	single	application	codebase	that’s	looked	after	by	a	single	team.	With	an	application
database,	only	the	team	using	the	application	needs	to	know	about	the	database	structure,	which	makes
it	much	easier	to	maintain	and	evolve	the	schema.	Since	the	application	team	controls	both	the
database	and	the	application	code,	the	responsibility	for	database	integrity	can	be	put	in	the
application	code.
Interoperability	concerns	can	now	shift	to	the	interfaces	of	the	application,	allowing	for	better

interaction	protocols	and	providing	support	for	changing	them.	During	the	2000s	we	saw	a	distinct
shift	to	web	services	[Daigneau],	where	applications	would	communicate	over	HTTP.	Web	services
enabled	a	new	form	of	a	widely	used	communication	mechanism—a	challenger	to	using	the	SQL	with
shared	databases.	(Much	of	this	work	was	done	under	the	banner	of	“Service-Oriented
Architecture”—a	term	most	notable	for	its	lack	of	a	consistent	meaning.)
An	interesting	aspect	of	this	shift	to	web	services	as	an	integration	mechanism	was	that	it	resulted	in

more	flexibility	for	the	structure	of	the	data	that	was	being	exchanged.	If	you	communicate	with	SQL,
the	data	must	be	structured	as	relations.	However,	with	a	service,	you	are	able	to	use	richer	data
structures	with	nested	records	and	lists.	These	are	usually	represented	as	documents	in	XML	or,	more
recently,	JSON.	In	general,	with	remote	communication	you	want	to	reduce	the	number	of	round	trips
involved	in	the	interaction,	so	it’s	useful	to	be	able	to	put	a	rich	structure	of	information	into	a	single
request	or	response.
If	you	are	going	to	use	services	for	integration,	most	of	the	time	web	services—using	text	over

HTTP—is	the	way	to	go.	However,	if	you	are	dealing	with	highly	performance-sensitive	interactions,
you	may	need	a	binary	protocol.	Only	do	this	if	you	are	sure	you	have	the	need,	as	text	protocols	are
easier	to	work	with—consider	the	example	of	the	Internet.
Once	you	have	made	the	decision	to	use	an	application	database,	you	get	more	freedom	of

choosing	a	database.	Since	there	is	a	decoupling	between	your	internal	database	and	the	services	with
which	you	talk	to	the	outside	world,	the	outside	world	doesn’t	have	to	care	how	you	store	your	data,
allowing	you	to	consider	nonrelational	options.	Furthermore,	there	are	many	features	of	relational
databases,	such	as	security,	that	are	less	useful	to	an	application	database	because	they	can	be	done	by
the	enclosing	application	instead.
Despite	this	freedom,	however,	it	wasn’t	apparent	that	application	databases	led	to	a	big	rush	to

alternative	data	stores.	Most	teams	that	embraced	the	application	database	approach	stuck	with
relational	databases.	After	all,	using	an	application	database	yields	many	advantages	even	ignoring
the	database	flexibility	(which	is	why	we	generally	recommend	it).	Relational	databases	are	familiar
and	usually	work	very	well	or,	at	least,	well	enough.	Perhaps,	given	time,	we	might	have	seen	the	shift
to	application	databases	to	open	a	real	crack	in	the	relational	hegemony—but	such	cracks	came	from

another	source.

1.4.	Attack	of	the	Clusters
At	the	beginning	of	the	new	millennium	the	technology	world	was	hit	by	the	busting	of	the	1990s	dot-
com	bubble.	While	this	saw	many	people	questioning	the	economic	future	of	the	Internet,	the	2000s
did	see	several	large	web	properties	dramatically	increase	in	scale.
This	increase	in	scale	was	happening	along	many	dimensions.	Websites	started	tracking	activity	and

structure	in	a	very	detailed	way.	Large	sets	of	data	appeared:	links,	social	networks,	activity	in	logs,
mapping	data.	With	this	growth	in	data	came	a	growth	in	users—as	the	biggest	websites	grew	to	be
vast	estates	regularly	serving	huge	numbers	of	visitors.
Coping	with	the	increase	in	data	and	traffic	required	more	computing	resources.	To	handle	this

kind	of	increase,	you	have	two	choices:	up	or	out.	Scaling	up	implies	bigger	machines,	more
processors,	disk	storage,	and	memory.	But	bigger	machines	get	more	and	more	expensive,	not	to
mention	that	there	are	real	limits	as	your	size	increases.	The	alternative	is	to	use	lots	of	small
machines	in	a	cluster.	A	cluster	of	small	machines	can	use	commodity	hardware	and	ends	up	being
cheaper	at	these	kinds	of	scales.	It	can	also	be	more	resilient—while	individual	machine	failures	are
common,	the	overall	cluster	can	be	built	to	keep	going	despite	such	failures,	providing	high
reliability.
As	large	properties	moved	towards	clusters,	that	revealed	a	new	problem—relational	databases	are

not	designed	to	be	run	on	clusters.	Clustered	relational	databases,	such	as	the	Oracle	RAC	or
Microsoft	SQL	Server,	work	on	the	concept	of	a	shared	disk	subsystem.	They	use	a	cluster-aware	file
system	that	writes	to	a	highly	available	disk	subsystem—but	this	means	the	cluster	still	has	the	disk
subsystem	as	a	single	point	of	failure.	Relational	databases	could	also	be	run	as	separate	servers	for
different	sets	of	data,	effectively	sharding	(“Sharding,”	p.	38)	the	database.	While	this	separates	the
load,	all	the	sharding	has	to	be	controlled	by	the	application	which	has	to	keep	track	of	which
database	server	to	talk	to	for	each	bit	of	data.	Also,	we	lose	any	querying,	referential	integrity,
transactions,	or	consistency	controls	that	cross	shards.	A	phrase	we	often	hear	in	this	context	from
people	who’ve	done	this	is	“unnatural	acts.”
These	technical	issues	are	exacerbated	by	licensing	costs.	Commercial	relational	databases	are

usually	priced	on	a	single-server	assumption,	so	running	on	a	cluster	raised	prices	and	led	to
frustrating	negotiations	with	purchasing	departments.
This	mismatch	between	relational	databases	and	clusters	led	some	organization	to	consider	an

alternative	route	to	data	storage.	Two	companies	in	particular—Google	and	Amazon—have	been
very	influential.	Both	were	on	the	forefront	of	running	large	clusters	of	this	kind;	furthermore,	they
were	capturing	huge	amounts	of	data.	These	things	gave	them	the	motive.	Both	were	successful	and
growing	companies	with	strong	technical	components,	which	gave	them	the	means	and	opportunity.	It
was	no	wonder	they	had	murder	in	mind	for	their	relational	databases.	As	the	2000s	drew	on,	both
companies	produced	brief	but	highly	influential	papers	about	their	efforts:	BigTable	from	Google
and	Dynamo	from	Amazon.
It’s	often	said	that	Amazon	and	Google	operate	at	scales	far	removed	from	most	organizations,	so

the	solutions	they	needed	may	not	be	relevant	to	an	average	organization.	While	it’s	true	that	most
software	projects	don’t	need	that	level	of	scale,	it’s	also	true	that	more	and	more	organizations	are
beginning	to	explore	what	they	can	do	by	capturing	and	processing	more	data—and	to	run	into	the
same	problems.	So,	as	more	information	leaked	out	about	what	Google	and	Amazon	had	done,
people	began	to	explore	making	databases	along	similar	lines—explicitly	designed	to	live	in	a	world

of	clusters.	While	the	earlier	menaces	to	relational	dominance	turned	out	to	be	phantoms,	the	threat
from	clusters	was	serious.

1.5.	The	Emergence	of	NoSQL
It’s	a	wonderful	irony	that	the	term	“NoSQL”	first	made	its	appearance	in	the	late	90s	as	the	name	of
an	open-source	relational	database	[Strozzi	NoSQL].	Led	by	Carlo	Strozzi,	this	database	stores	its
tables	as	ASCII	files,	each	tuple	represented	by	a	line	with	fields	separated	by	tabs.	The	name	comes
from	the	fact	that	the	database	doesn’t	use	SQL	as	a	query	language.	Instead,	the	database	is
manipulated	through	shell	scripts	that	can	be	combined	into	the	usual	UNIX	pipelines.	Other	than	the
terminological	coincidence,	Strozzi’s	NoSQL	had	no	influence	on	the	databases	we	describe	in	this
book.
The	usage	of	“NoSQL”	that	we	recognize	today	traces	back	to	a	meetup	on	June	11,	2009	in	San

Francisco	organized	by	Johan	Oskarsson,	a	software	developer	based	in	London.	The	example	of
BigTable	and	Dynamo	had	inspired	a	bunch	of	projects	experimenting	with	alternative	data	storage,
and	discussions	of	these	had	become	a	feature	of	the	better	software	conferences	around	that	time.
Johan	was	interested	in	finding	out	more	about	some	of	these	new	databases	while	he	was	in	San
Francisco	for	a	Hadoop	summit.	Since	he	had	little	time	there,	he	felt	that	it	wouldn’t	be	feasible	to
visit	them	all,	so	he	decided	to	host	a	meetup	where	they	could	all	come	together	and	present	their
work	to	whoever	was	interested.
Johan	wanted	a	name	for	the	meetup—something	that	would	make	a	good	Twitter	hashtag:	short,

memorable,	and	without	too	many	Google	hits	so	that	a	search	on	the	name	would	quickly	find	the
meetup.	He	asked	for	suggestions	on	the	#cassandra	IRC	channel	and	got	a	few,	selecting	the
suggestion	of	“NoSQL”	from	Eric	Evans	(a	developer	at	Rackspace,	no	connection	to	the	DDD	Eric
Evans).	While	it	had	the	disadvantage	of	being	negative	and	not	really	describing	these	systems,	it	did
fit	the	hashtag	criteria.	At	the	time	they	were	thinking	of	only	naming	a	single	meeting	and	were	not
expecting	it	to	catch	on	to	name	this	entire	technology	trend	[Oskarsson].
The	term	“NoSQL”	caught	on	like	wildfire,	but	it’s	never	been	a	term	that’s	had	much	in	the	way	of

a	strong	definition.	The	original	call	[NoSQL	Meetup]	for	the	meetup	asked	for	“open-source,
distributed,	nonrelational	databases.”	The	talks	there	[NoSQL	Debrief]	were	from	Voldemort,
Cassandra,	Dynomite,	HBase,	Hypertable,	CouchDB,	and	MongoDB—but	the	term	has	never	been
confined	to	that	original	septet.	There’s	no	generally	accepted	definition,	nor	an	authority	to	provide
one,	so	all	we	can	do	is	discuss	some	common	characteristics	of	the	databases	that	tend	to	be	called
“NoSQL.”
To	begin	with,	there	is	the	obvious	point	that	NoSQL	databases	don’t	use	SQL.	Some	of	them	do

have	query	languages,	and	it	makes	sense	for	them	to	be	similar	to	SQL	in	order	to	make	them	easier
to	learn.	Cassandra’s	CQL	is	like	this—“exactly	like	SQL	(except	where	it’s	not)”	[CQL].	But	so	far
none	have	implemented	anything	that	would	fit	even	the	rather	flexible	notion	of	standard	SQL.	It	will
be	interesting	to	see	what	happens	if	an	established	NoSQL	database	decides	to	implement	a
reasonably	standard	SQL;	the	only	predictable	outcome	for	such	an	eventuality	is	plenty	of	argument.
Another	important	characteristic	of	these	databases	is	that	they	are	generally	open-source	projects.

Although	the	term	NoSQL	is	frequently	applied	to	closed-source	systems,	there’s	a	notion	that
NoSQL	is	an	open-source	phenomenon.
Most	NoSQL	databases	are	driven	by	the	need	to	run	on	clusters,	and	this	is	certainly	true	of	those

that	were	talked	about	during	the	initial	meetup.	This	has	an	effect	on	their	data	model	as	well	as	their
approach	to	consistency.	Relational	databases	use	ACID	transactions	(p.	19)	to	handle	consistency

across	the	whole	database.	This	inherently	clashes	with	a	cluster	environment,	so	NoSQL	databases
offer	a	range	of	options	for	consistency	and	distribution.
However,	not	all	NoSQL	databases	are	strongly	oriented	towards	running	on	clusters.	Graph

databases	are	one	style	of	NoSQL	databases	that	uses	a	distribution	model	similar	to	relational
databases	but	offers	a	different	data	model	that	makes	it	better	at	handling	data	with	complex
relationships.
NoSQL	databases	are	generally	based	on	the	needs	of	the	early	21st	century	web	estates,	so	usually

only	systems	developed	during	that	time	frame	are	called	NoSQL—thus	ruling	out	hoards	of
databases	created	before	the	new	millennium,	let	alone	BC	(Before	Codd).
NoSQL	databases	operate	without	a	schema,	allowing	you	to	freely	add	fields	to	database	records

without	having	to	define	any	changes	in	structure	first.	This	is	particularly	useful	when	dealing	with
nonuniform	data	and	custom	fields	which	forced	relational	databases	to	use	names	like	customField6
or	custom	field	tables	that	are	awkward	to	process	and	understand.
All	of	the	above	are	common	characteristics	of	things	that	we	see	described	as	NoSQL	databases.

None	of	these	are	definitional,	and	indeed	it’s	likely	that	there	will	never	be	a	coherent	definition	of
“NoSQL”	(sigh).	However,	this	crude	set	of	characteristics	has	been	our	guide	in	writing	this	book.
Our	chief	enthusiasm	with	this	subject	is	that	the	rise	of	NoSQL	has	opened	up	the	range	of	options
for	data	storage.	Consequently,	this	opening	up	shouldn’t	be	confined	to	what’s	usually	classed	as	a
NoSQL	store.	We	hope	that	other	data	storage	options	will	become	more	acceptable,	including	many
that	predate	the	NoSQL	movement.	There	is	a	limit,	however,	to	what	we	can	usefully	discuss	in	this
book,	so	we’ve	decided	to	concentrate	on	this	noDefinition.
When	you	first	hear	“NoSQL,”	an	immediate	question	is	what	does	it	stand	for—a	“no”	to	SQL?

Most	people	who	talk	about	NoSQL	say	that	it	really	means	“Not	Only	SQL,”	but	this	interpretation
has	a	couple	of	problems.	Most	people	write	“NoSQL”	whereas	“Not	Only	SQL”	would	be	written
“NOSQL.”	Also,	there	wouldn’t	be	much	point	in	calling	something	a	NoSQL	database	under	the	“not
only”	meaning—because	then,	Oracle	or	Postgres	would	fit	that	definition,	we	would	prove	that	black
equals	white	and	would	all	get	run	over	on	crosswalks.
To	resolve	this,	we	suggest	that	you	don’t	worry	about	what	the	term	stands	for,	but	rather	about

what	it	means	(which	is	recommended	with	most	acronyms).	Thus,	when	“NoSQL”	is	applied	to	a
database,	it	refers	to	an	ill-defined	set	of	mostly	open-source	databases,	mostly	developed	in	the	early
21st	century,	and	mostly	not	using	SQL.
The	“not-only”	interpretation	does	have	its	value,	as	it	describes	the	ecosystem	that	many	people

think	is	the	future	of	databases.	This	is	in	fact	what	we	consider	to	be	the	most	important	contribution
of	this	way	of	thinking—it’s	better	to	think	of	NoSQL	as	a	movement	rather	than	a	technology.	We
don’t	think	that	relational	databases	are	going	away—they	are	still	going	to	be	the	most	common
form	of	database	in	use.	Even	though	we’ve	written	this	book,	we	still	recommend	relational
databases.	Their	familiarity,	stability,	feature	set,	and	available	support	are	compelling	arguments	for
most	projects.
The	change	is	that	now	we	see	relational	databases	as	one	option	for	data	storage.	This	point	of

view	is	often	referred	to	as	polyglot	persistence—using	different	data	stores	in	different
circumstances.	Instead	of	just	picking	a	relational	database	because	everyone	does,	we	need	to
understand	the	nature	of	the	data	we’re	storing	and	how	we	want	to	manipulate	it.	The	result	is	that
most	organizations	will	have	a	mix	of	data	storage	technologies	for	different	circumstances.
In	order	to	make	this	polyglot	world	work,	our	view	is	that	organizations	also	need	to	shift	from

integration	databases	to	application	databases.	Indeed,	we	assume	in	this	book	that	you’ll	be	using	a

NoSQL	database	as	an	application	database;	we	don’t	generally	consider	NoSQL	databases	a	good
choice	for	integration	databases.	We	don’t	see	this	as	a	disadvantage	as	we	think	that	even	if	you	don’t
use	NoSQL,	shifting	to	encapsulating	data	in	services	is	a	good	direction	to	take.
In	our	account	of	the	history	of	NoSQL	development,	we’ve	concentrated	on	big	data	running	on

clusters.	While	we	think	this	is	the	key	thing	that	drove	the	opening	up	of	the	database	world,	it	isn’t
the	only	reason	we	see	project	teams	considering	NoSQL	databases.	An	equally	important	reason	is
the	old	frustration	with	the	impedance	mismatch	problem.	The	big	data	concerns	have	created	an
opportunity	for	people	to	think	freshly	about	their	data	storage	needs,	and	some	development	teams
see	that	using	a	NoSQL	database	can	help	their	productivity	by	simplifying	their	database	access	even
if	they	have	no	need	to	scale	beyond	a	single	machine.
So,	as	you	read	the	rest	of	this	book,	remember	there	are	two	primary	reasons	for	considering

NoSQL.	One	is	to	handle	data	access	with	sizes	and	performance	that	demand	a	cluster;	the	other	is	to
improve	the	productivity	of	application	development	by	using	a	more	convenient	data	interaction
style.

1.6.	Key	Points
•	Relational	databases	have	been	a	successful	technology	for	twenty	years,	providing	persistence,
concurrency	control,	and	an	integration	mechanism.

•	Application	developers	have	been	frustrated	with	the	impedance	mismatch	between	the
relational	model	and	the	in-memory	data	structures.

•	There	is	a	movement	away	from	using	databases	as	integration	points	towards	encapsulating
databases	within	applications	and	integrating	through	services.

•	The	vital	factor	for	a	change	in	data	storage	was	the	need	to	support	large	volumes	of	data	by
running	on	clusters.	Relational	databases	are	not	designed	to	run	efficiently	on	clusters.

•	NoSQL	is	an	accidental	neologism.	There	is	no	prescriptive	definition—all	you	can	make	is	an
observation	of	common	characteristics.

•	The	common	characteristics	of	NoSQL	databases	are
•	Not	using	the	relational	model
•	Running	well	on	clusters
•	Open-source
•	Built	for	the	21st	century	web	estates
•	Schemaless

•	The	most	important	result	of	the	rise	of	NoSQL	is	Polyglot	Persistence.

Chapter	2.	Aggregate	Data	Models

A	data	model	is	the	model	through	which	we	perceive	and	manipulate	our	data.	For	people	using	a
database,	the	data	model	describes	how	we	interact	with	the	data	in	the	database.	This	is	distinct	from	a
storage	model,	which	describes	how	the	database	stores	and	manipulates	the	data	internally.	In	an
ideal	world,	we	should	be	ignorant	of	the	storage	model,	but	in	practice	we	need	at	least	some	inkling
of	it—primarily	to	achieve	decent	performance.
In	conversation,	the	term	“data	model”	often	means	the	model	of	the	specific	data	in	an	application.

A	developer	might	point	to	an	entity-relationship	diagram	of	their	database	and	refer	to	that	as	their
data	model	containing	customers,	orders,	products,	and	the	like.	However,	in	this	book	we’ll	mostly
be	using	“data	model”	to	refer	to	the	model	by	which	the	database	organizes	data—what	might	be
more	formally	called	a	metamodel.
The	dominant	data	model	of	the	last	couple	of	decades	is	the	relational	data	model,	which	is	best

visualized	as	a	set	of	tables,	rather	like	a	page	of	a	spreadsheet.	Each	table	has	rows,	with	each	row
representing	some	entity	of	interest.	We	describe	this	entity	through	columns,	each	having	a	single
value.	A	column	may	refer	to	another	row	in	the	same	or	different	table,	which	constitutes	a
relationship	between	those	entities.	(We’re	using	informal	but	common	terminology	when	we	speak
of	tables	and	rows;	the	more	formal	terms	would	be	relations	and	tuples.)
One	of	the	most	obvious	shifts	with	NoSQL	is	a	move	away	from	the	relational	model.	Each

NoSQL	solution	has	a	different	model	that	it	uses,	which	we	put	into	four	categories	widely	used	in
the	NoSQL	ecosystem:	key-value,	document,	column-family,	and	graph.	Of	these,	the	first	three	share
a	common	characteristic	of	their	data	models	which	we	will	call	aggregate	orientation.	In	this	chapter
we’ll	explain	what	we	mean	by	aggregate	orientation	and	what	it	means	for	data	models.

2.1.	Aggregates
The	relational	model	takes	the	information	that	we	want	to	store	and	divides	it	into	tuples	(rows).	A
tuple	is	a	limited	data	structure:	It	captures	a	set	of	values,	so	you	cannot	nest	one	tuple	within	another
to	get	nested	records,	nor	can	you	put	a	list	of	values	or	tuples	within	another.	This	simplicity
underpins	the	relational	model—it	allows	us	to	think	of	all	operations	as	operating	on	and	returning
tuples.
Aggregate	orientation	takes	a	different	approach.	It	recognizes	that	often,	you	want	to	operate	on

data	in	units	that	have	a	more	complex	structure	than	a	set	of	tuples.	It	can	be	handy	to	think	in	terms
of	a	complex	record	that	allows	lists	and	other	record	structures	to	be	nested	inside	it.	As	we’ll	see,
key-value,	document,	and	column-family	databases	all	make	use	of	this	more	complex	record.
However,	there	is	no	common	term	for	this	complex	record;	in	this	book	we	use	the	term
“aggregate.”
Aggregate	is	a	term	that	comes	from	Domain-Driven	Design	[Evans].	In	Domain-Driven	Design,

an	aggregate	is	a	collection	of	related	objects	that	we	wish	to	treat	as	a	unit.	In	particular,	it	is	a	unit
for	data	manipulation	and	management	of	consistency.	Typically,	we	like	to	update	aggregates	with
atomic	operations	and	communicate	with	our	data	storage	in	terms	of	aggregates.	This	definition
matches	really	well	with	how	key-value,	document,	and	column-family	databases	work.	Dealing	in
aggregates	makes	it	much	easier	for	these	databases	to	handle	operating	on	a	cluster,	since	the
aggregate	makes	a	natural	unit	for	replication	and	sharding.	Aggregates	are	also	often	easier	for
application	programmers	to	work	with,	since	they	often	manipulate	data	through	aggregate	structures.

2.1.1.	Example	of	Relations	and	Aggregates
At	this	point,	an	example	may	help	explain	what	we’re	talking	about.	Let’s	assume	we	have	to	build	an
e-commerce	website;	we	are	going	to	be	selling	items	directly	to	customers	over	the	web,	and	we	will
have	to	store	information	about	users,	our	product	catalog,	orders,	shipping	addresses,	billing
addresses,	and	payment	data.	We	can	use	this	scenario	to	model	the	data	using	a	relation	data	store	as
well	as	NoSQL	data	stores	and	talk	about	their	pros	and	cons.	For	a	relational	database,	we	might	start
with	a	data	model	shown	in	Figure	2.1.

Figure	2.1.	Data	model	oriented	around	a	relational	database	(using	UML	notation	[Fowler
UML])

Figure	2.2	presents	some	sample	data	for	this	model.

Figure	2.2.	Typical	data	using	RDBMS	data	model
As	we’re	good	relational	soldiers,	everything	is	properly	normalized,	so	that	no	data	is	repeated	in

multiple	tables.	We	also	have	referential	integrity.	A	realistic	order	system	would	naturally	be	more
involved	than	this,	but	this	is	the	benefit	of	the	rarefied	air	of	a	book.
Now	let’s	see	how	this	model	might	look	when	we	think	in	more	aggregate-oriented	terms	(Figure

2.3).

Figure	2.3.	An	aggregate	data	model
Again,	we	have	some	sample	data,	which	we’ll	show	in	JSON	format	as	that’s	a	common

representation	for	data	in	NoSQL	land.
Click	here	to	view	code	image

//	in	customers
{
"id":1,
"name":"Martin",
"billingAddress":[{"city":"Chicago"}]
}

//	in	orders
{
"id":99,
"customerId":1,
"orderItems":[
		{
		"productId":27,
		"price":	32.45,
		"productName":	"NoSQL	Distilled"
				}
],
"shippingAddress":[{"city":"Chicago"}]
"orderPayment":[
		{
				"ccinfo":"1000-1000-1000-1000",
				"txnId":"abelif879rft",
				"billingAddress":	{"city":	"Chicago"}
		}
],
}

In	this	model,	we	have	two	main	aggregates:	customer	and	order.	We’ve	used	the	black-diamond
composition	marker	in	UML	to	show	how	data	fits	into	the	aggregation	structure.	The	customer
contains	a	list	of	billing	addresses;	the	order	contains	a	list	of	order	items,	a	shipping	address,	and
payments.	The	payment	itself	contains	a	billing	address	for	that	payment.
A	single	logical	address	record	appears	three	times	in	the	example	data,	but	instead	of	using	IDs	it’s

treated	as	a	value	and	copied	each	time.	This	fits	the	domain	where	we	would	not	want	the	shipping
address,	nor	the	payment’s	billing	address,	to	change.	In	a	relational	database,	we	would	ensure	that
the	address	rows	aren’t	updated	for	this	case,	making	a	new	row	instead.	With	aggregates,	we	can
copy	the	whole	address	structure	into	the	aggregate	as	we	need	to.
The	link	between	the	customer	and	the	order	isn’t	within	either	aggregate—it’s	a	relationship

between	aggregates.	Similarly,	the	link	from	an	order	item	would	cross	into	a	separate	aggregate
structure	for	products,	which	we	haven’t	gone	into.	We’ve	shown	the	product	name	as	part	of	the
order	item	here—this	kind	of	denormalization	is	similar	to	the	tradeoffs	with	relational	databases,	but
is	more	common	with	aggregates	because	we	want	to	minimize	the	number	of	aggregates	we	access
during	a	data	interaction.
The	important	thing	to	notice	here	isn’t	the	particular	way	we’ve	drawn	the	aggregate	boundary	so

much	as	the	fact	that	you	have	to	think	about	accessing	that	data—and	make	that	part	of	your	thinking
when	developing	the	application	data	model.	Indeed	we	could	draw	our	aggregate	boundaries
differently,	putting	all	the	orders	for	a	customer	into	the	customer	aggregate	(Figure	2.4).

Figure	2.4.	Embed	all	the	objects	for	customer	and	the	customer’s	orders
Using	the	above	data	model,	an	example	Customer	and	Order	would	look	like	this:

Click	here	to	view	code	image

//	in	customers
{
"customer":	{
"id":	1,
"name":	"Martin",
"billingAddress":	[{"city":	"Chicago"}],
"orders":	[
		{
				"id":99,
				"customerId":1,
				"orderItems":[
				{
				"productId":27,
				"price":	32.45,
				"productName":	"NoSQL	Distilled"
				}
],
		"shippingAddress":[{"city":"Chicago"}]
		"orderPayment":[
				{
				"ccinfo":"1000-1000-1000-1000",
				"txnId":"abelif879rft",
				"billingAddress":	{"city":	"Chicago"}
				}],
		}]
}
}

Like	most	things	in	modeling,	there’s	no	universal	answer	for	how	to	draw	your	aggregate
boundaries.	It	depends	entirely	on	how	you	tend	to	manipulate	your	data.	If	you	tend	to	access	a
customer	together	with	all	of	that	customer ’s	orders	at	once,	then	you	would	prefer	a	single
aggregate.	However,	if	you	tend	to	focus	on	accessing	a	single	order	at	a	time,	then	you	should	prefer
having	separate	aggregates	for	each	order.	Naturally,	this	is	very	context-specific;	some	applications
will	prefer	one	or	the	other,	even	within	a	single	system,	which	is	exactly	why	many	people	prefer
aggregate	ignorance.

2.1.2.	Consequences	of	Aggregate	Orientation
While	the	relational	mapping	captures	the	various	data	elements	and	their	relationships	reasonably
well,	it	does	so	without	any	notion	of	an	aggregate	entity.	In	our	domain	language,	we	might	say	that
an	order	consists	of	order	items,	a	shipping	address,	and	a	payment.	This	can	be	expressed	in	the
relational	model	in	terms	of	foreign	key	relationships—but	there	is	nothing	to	distinguish
relationships	that	represent	aggregations	from	those	that	don’t.	As	a	result,	the	database	can’t	use	a
knowledge	of	aggregate	structure	to	help	it	store	and	distribute	the	data.
Various	data	modeling	techniques	have	provided	ways	of	marking	aggregate	or	composite

structures.	The	problem,	however,	is	that	modelers	rarely	provide	any	semantics	for	what	makes	an
aggregate	relationship	different	from	any	other;	where	there	are	semantics,	they	vary.	When	working
with	aggregate-oriented	databases,	we	have	a	clearer	semantics	to	consider	by	focusing	on	the	unit	of
interaction	with	the	data	storage.	It	is,	however,	not	a	logical	data	property:	It’s	all	about	how	the	data
is	being	used	by	applications—a	concern	that	is	often	outside	the	bounds	of	data	modeling.
Relational	databases	have	no	concept	of	aggregate	within	their	data	model,	so	we	call	them

aggregate-ignorant.	In	the	NoSQL	world,	graph	databases	are	also	aggregate-ignorant.	Being
aggregate-ignorant	is	not	a	bad	thing.	It’s	often	difficult	to	draw	aggregate	boundaries	well,
particularly	if	the	same	data	is	used	in	many	different	contexts.	An	order	makes	a	good	aggregate
when	a	customer	is	making	and	reviewing	orders,	and	when	the	retailer	is	processing	orders.
However,	if	a	retailer	wants	to	analyze	its	product	sales	over	the	last	few	months,	then	an	order
aggregate	becomes	a	trouble.	To	get	to	product	sales	history,	you’ll	have	to	dig	into	every	aggregate
in	the	database.	So	an	aggregate	structure	may	help	with	some	data	interactions	but	be	an	obstacle	for
others.	An	aggregate-ignorant	model	allows	you	to	easily	look	at	the	data	in	different	ways,	so	it	is	a
better	choice	when	you	don’t	have	a	primary	structure	for	manipulating	your	data.
The	clinching	reason	for	aggregate	orientation	is	that	it	helps	greatly	with	running	on	a	cluster,

which	as	you’ll	remember	is	the	killer	argument	for	the	rise	of	NoSQL.	If	we’re	running	on	a	cluster,
we	need	to	minimize	how	many	nodes	we	need	to	query	when	we	are	gathering	data.	By	explicitly
including	aggregates,	we	give	the	database	important	information	about	which	bits	of	data	will	be
manipulated	together,	and	thus	should	live	on	the	same	node.
Aggregates	have	an	important	consequence	for	transactions.	Relational	databases	allow	you	to

manipulate	any	combination	of	rows	from	any	tables	in	a	single	transaction.	Such	transactions	are
called	ACID	transactions:	Atomic,	Consistent,	Isolated,	and	Durable.	ACID	is	a	rather	contrived
acronym;	the	real	point	is	the	atomicity:	Many	rows	spanning	many	tables	are	updated	as	a	single
operation.	This	operation	either	succeeds	or	fails	in	its	entirety,	and	concurrent	operations	are
isolated	from	each	other	so	they	cannot	see	a	partial	update.
It’s	often	said	that	NoSQL	databases	don’t	support	ACID	transactions	and	thus	sacrifice	consistency.

This	is	a	rather	sweeping	simplification.	In	general,	it’s	true	that	aggregate-oriented	databases	don’t
have	ACID	transactions	that	span	multiple	aggregates.	Instead,	they	support	atomic	manipulation	of	a
single	aggregate	at	a	time.	This	means	that	if	we	need	to	manipulate	multiple	aggregates	in	an	atomic

way,	we	have	to	manage	that	ourselves	in	the	application	code.	In	practice,	we	find	that	most	of	the
time	we	are	able	to	keep	our	atomicity	needs	to	within	a	single	aggregate;	indeed,	that’s	part	of	the
consideration	for	deciding	how	to	divide	up	our	data	into	aggregates.	We	should	also	remember	that
graph	and	other	aggregate-ignorant	databases	usually	do	support	ACID	transactions	similar	to
relational	databases.	Above	all,	the	topic	of	consistency	is	much	more	involved	than	whether	a
database	is	ACID	or	not,	as	we’ll	explore	in	Chapter	5.

2.2.	Key-Value	and	Document	Data	Models
We	said	earlier	on	that	key-value	and	document	databases	were	strongly	aggregate-oriented.	What	we
meant	by	this	was	that	we	think	of	these	databases	as	primarily	constructed	through	aggregates.	Both
of	these	types	of	databases	consist	of	lots	of	aggregates	with	each	aggregate	having	a	key	or	ID	that’s
used	to	get	at	the	data.
The	two	models	differ	in	that	in	a	key-value	database,	the	aggregate	is	opaque	to	the	database—just

some	big	blob	of	mostly	meaningless	bits.	In	contrast,	a	document	database	is	able	to	see	a	structure
in	the	aggregate.	The	advantage	of	opacity	is	that	we	can	store	whatever	we	like	in	the	aggregate.	The
database	may	impose	some	general	size	limit,	but	other	than	that	we	have	complete	freedom.	A
document	database	imposes	limits	on	what	we	can	place	in	it,	defining	allowable	structures	and	types.
In	return,	however,	we	get	more	flexibility	in	access.
With	a	key-value	store,	we	can	only	access	an	aggregate	by	lookup	based	on	its	key.	With	a

document	database,	we	can	submit	queries	to	the	database	based	on	the	fields	in	the	aggregate,	we	can
retrieve	part	of	the	aggregate	rather	than	the	whole	thing,	and	database	can	create	indexes	based	on
the	contents	of	the	aggregate.
In	practice,	the	line	between	key-value	and	document	gets	a	bit	blurry.	People	often	put	an	ID	field

in	a	document	database	to	do	a	key-value	style	lookup.	Databases	classified	as	key-value	databases
may	allow	you	structures	for	data	beyond	just	an	opaque	aggregate.	For	example,	Riak	allows	you	to
add	metadata	to	aggregates	for	indexing	and	interaggregate	links,	Redis	allows	you	to	break	down	the
aggregate	into	lists	or	sets.	You	can	support	querying	by	integrating	search	tools	such	as	Solr.	As	an
example,	Riak	includes	a	search	facility	that	uses	Solr-like	searching	on	any	aggregates	that	are
stored	as	JSON	or	XML	structures.
Despite	this	blurriness,	the	general	distinction	still	holds.	With	key-value	databases,	we	expect	to

mostly	look	up	aggregates	using	a	key.	With	document	databases,	we	mostly	expect	to	submit	some
form	of	query	based	on	the	internal	structure	of	the	document;	this	might	be	a	key,	but	it’s	more	likely
to	be	something	else.

2.3.	Column-Family	Stores
One	of	the	early	and	influential	NoSQL	databases	was	Google’s	BigTable	[Chang	etc.].	Its	name
conjured	up	a	tabular	structure	which	it	realized	with	sparse	columns	and	no	schema.	As	you’ll	soon
see,	it	doesn’t	help	to	think	of	this	structure	as	a	table;	rather,	it	is	a	two-level	map.	But,	however	you
think	about	the	structure,	it	has	been	a	model	that	influenced	later	databases	such	as	HBase	and
Cassandra.
These	databases	with	a	bigtable-style	data	model	are	often	referred	to	as	column	stores,	but	that

name	has	been	around	for	a	while	to	describe	a	different	animal.	Pre-NoSQL	column	stores,	such	as
C-Store	[C-Store],	were	happy	with	SQL	and	the	relational	model.	The	thing	that	made	them	different
was	the	way	in	which	they	physically	stored	data.	Most	databases	have	a	row	as	a	unit	of	storage
which,	in	particular,	helps	write	performance.	However,	there	are	many	scenarios	where	writes	are

rare,	but	you	often	need	to	read	a	few	columns	of	many	rows	at	once.	In	this	situation,	it’s	better	to
store	groups	of	columns	for	all	rows	as	the	basic	storage	unit—which	is	why	these	databases	are
called	column	stores.
Bigtable	and	its	offspring	follow	this	notion	of	storing	groups	of	columns	(column	families)

together,	but	part	company	with	C-Store	and	friends	by	abandoning	the	relational	model	and	SQL.	In
this	book,	we	refer	to	this	class	of	databases	as	column-family	databases.
Perhaps	the	best	way	to	think	of	the	column-family	model	is	as	a	two-level	aggregate	structure.	As

with	key-value	stores,	the	first	key	is	often	described	as	a	row	identifier,	picking	up	the	aggregate	of
interest.	The	difference	with	column-family	structures	is	that	this	row	aggregate	is	itself	formed	of	a
map	of	more	detailed	values.	These	second-level	values	are	referred	to	as	columns.	As	well	as
accessing	the	row	as	a	whole,	operations	also	allow	picking	out	a	particular	column,	so	to	get	a
particular	customer ’s	name	from	Figure	2.5	you	could	do	something	like	get('1234',	'name').

Figure	2.5.	Representing	customer	information	in	a	column-family	structure
Column-family	databases	organize	their	columns	into	column	families.	Each	column	has	to	be	part

of	a	single	column	family,	and	the	column	acts	as	unit	for	access,	with	the	assumption	that	data	for	a
particular	column	family	will	be	usually	accessed	together.
This	also	gives	you	a	couple	of	ways	to	think	about	how	the	data	is	structured.
•	Row-oriented:	Each	row	is	an	aggregate	(for	example,	customer	with	the	ID	of	1234)	with
column	families	representing	useful	chunks	of	data	(profile,	order	history)	within	that
aggregate.

•	Column-oriented:	Each	column	family	defines	a	record	type	(e.g.,	customer	profiles)	with	rows
for	each	of	the	records.	You	then	think	of	a	row	as	the	join	of	records	in	all	column	families.

This	latter	aspect	reflects	the	columnar	nature	of	column-family	databases.	Since	the	database
knows	about	these	common	groupings	of	data,	it	can	use	this	information	for	its	storage	and	access
behavior.	Even	though	a	document	database	declares	some	structure	to	the	database,	each	document	is

still	seen	as	a	single	unit.	Column	families	give	a	two-dimensional	quality	to	column-family
databases.
This	terminology	is	as	established	by	Google	Bigtable	and	HBase,	but	Cassandra	looks	at	things

slightly	differently.	A	row	in	Cassandra	only	occurs	in	one	column	family,	but	that	column	family
may	contain	supercolumns—columns	that	contain	nested	columns.	The	supercolumns	in	Cassandra
are	the	best	equivalent	to	the	classic	Bigtable	column	families.
It	can	still	be	confusing	to	think	of	column-families	as	tables.	You	can	add	any	column	to	any	row,

and	rows	can	have	very	different	column	keys.	While	new	columns	are	added	to	rows	during	regular
database	access,	defining	new	column	families	is	much	rarer	and	may	involve	stopping	the	database
for	it	to	happen.
The	example	of	Figure	2.5	illustrates	another	aspect	of	column-family	databases	that	may	be

unfamiliar	for	people	used	to	relational	tables:	the	orders	column	family.	Since	columns	can	be
added	freely,	you	can	model	a	list	of	items	by	making	each	item	a	separate	column.	This	is	very	odd
if	you	think	of	a	column	family	as	a	table,	but	quite	natural	if	you	think	of	a	column-family	row	as	an
aggregate.	Cassandra	uses	the	terms	“wide”	and	“skinny.”	Skinny	rows	have	few	columns	with	the
same	columns	used	across	the	many	different	rows.	In	this	case,	the	column	family	defines	a	record
type,	each	row	is	a	record,	and	each	column	is	a	field.	A	wide	row	has	many	columns	(perhaps
thousands),	with	rows	having	very	different	columns.	A	wide	column	family	models	a	list,	with	each
column	being	one	element	in	that	list.
A	consequence	of	wide	column	families	is	that	a	column	family	may	define	a	sort	order	for	its

columns.	This	way	we	can	access	orders	by	their	order	key	and	access	ranges	of	orders	by	their	keys.
While	this	might	not	be	useful	if	we	keyed	orders	by	their	IDs,	it	would	be	if	we	made	the	key	out	of	a
concatenation	of	date	and	ID	(e.g.,	20111027-1001).
Although	it’s	useful	to	distinguish	column	families	by	their	wide	or	skinny	nature,	there’s	no

technical	reason	why	a	column	family	cannot	contain	both	field-like	columns	and	list-like	columns—
although	doing	this	would	confuse	the	sort	ordering.

2.4.	Summarizing	Aggregate-Oriented	Databases
At	this	point,	we’ve	covered	enough	material	to	give	you	a	reasonable	overview	of	the	three	different
styles	of	aggregate-oriented	data	models	and	how	they	differ.
What	they	all	share	is	the	notion	of	an	aggregate	indexed	by	a	key	that	you	can	use	for	lookup.	This

aggregate	is	central	to	running	on	a	cluster,	as	the	database	will	ensure	that	all	the	data	for	an
aggregate	is	stored	together	on	one	node.	The	aggregate	also	acts	as	the	atomic	unit	for	updates,
providing	a	useful,	if	limited,	amount	of	transactional	control.
Within	that	notion	of	aggregate,	we	have	some	differences.	The	key-value	data	model	treats	the

aggregate	as	an	opaque	whole,	which	means	you	can	only	do	key	lookup	for	the	whole	aggregate—
you	cannot	run	a	query	nor	retrieve	a	part	of	the	aggregate.
The	document	model	makes	the	aggregate	transparent	to	the	database	allowing	you	to	do	queries

and	partial	retrievals.	However,	since	the	document	has	no	schema,	the	database	cannot	act	much	on
the	structure	of	the	document	to	optimize	the	storage	and	retrieval	of	parts	of	the	aggregate.
Column-family	models	divide	the	aggregate	into	column	families,	allowing	the	database	to	treat

them	as	units	of	data	within	the	row	aggregate.	This	imposes	some	structure	on	the	aggregate	but
allows	the	database	to	take	advantage	of	that	structure	to	improve	its	accessibility.

2.5.	Further	Reading

For	more	on	the	general	concept	of	aggregates,	which	are	often	used	with	relational	databases	too,
see	[Evans].	The	Domain-Driven	Design	community	is	the	best	source	for	further	information	about
aggregates—recent	information	usually	appears	at	http://domaindrivendesign.org.

2.6.	Key	Points
•	An	aggregate	is	a	collection	of	data	that	we	interact	with	as	a	unit.	Aggregates	form	the
boundaries	for	ACID	operations	with	the	database.

•	Key-value,	document,	and	column-family	databases	can	all	be	seen	as	forms	of	aggregate-
oriented	database.

•	Aggregates	make	it	easier	for	the	database	to	manage	data	storage	over	clusters.
•	Aggregate-oriented	databases	work	best	when	most	data	interaction	is	done	with	the	same
aggregate;	aggregate-ignorant	databases	are	better	when	interactions	use	data	organized	in
many	different	formations.

Chapter	3.	More	Details	on	Data	Models

So	far	we’ve	covered	the	key	feature	in	most	NoSQL	databases:	their	use	of	aggregates	and	how
aggregate-oriented	databases	model	aggregates	in	different	ways.	While	aggregates	are	a	central	part
of	the	NoSQL	story,	there	is	more	to	the	data	modeling	side	than	that,	and	we’ll	explore	these	further
concepts	in	this	chapter.

3.1.	Relationships
Aggregates	are	useful	in	that	they	put	together	data	that	is	commonly	accessed	together.	But	there	are
still	lots	of	cases	where	data	that’s	related	is	accessed	differently.	Consider	the	relationship	between	a
customer	and	all	of	his	orders.	Some	applications	will	want	to	access	the	order	history	whenever	they
access	the	customer;	this	fits	in	well	with	combining	the	customer	with	his	order	history	into	a	single
aggregate.	Other	applications,	however,	want	to	process	orders	individually	and	thus	model	orders	as
independent	aggregates.
In	this	case,	you’ll	want	separate	order	and	customer	aggregates	but	with	some	kind	of	relationship

between	them	so	that	any	work	on	an	order	can	look	up	customer	data.	The	simplest	way	to	provide
such	a	link	is	to	embed	the	ID	of	the	customer	within	the	order ’s	aggregate	data.	That	way,	if	you	need
data	from	the	customer	record,	you	read	the	order,	ferret	out	the	customer	ID,	and	make	another	call
to	the	database	to	read	the	customer	data.	This	will	work,	and	will	be	just	fine	in	many	scenarios—but
the	database	will	be	ignorant	of	the	relationship	in	the	data.	This	can	be	important	because	there	are
times	when	it’s	useful	for	the	database	to	know	about	these	links.
As	a	result,	many	databases—even	key-value	stores—provide	ways	to	make	these	relationships

visible	to	the	database.	Document	stores	make	the	content	of	the	aggregate	available	to	the	database	to
form	indexes	and	queries.	Riak,	a	key-value	store,	allows	you	to	put	link	information	in	metadata,
supporting	partial	retrieval	and	link-walking	capability.
An	important	aspect	of	relationships	between	aggregates	is	how	they	handle	updates.	Aggregate-

oriented	databases	treat	the	aggregate	as	the	unit	of	data-retrieval.	Consequently,	atomicity	is	only
supported	within	the	contents	of	a	single	aggregate.	If	you	update	multiple	aggregates	at	once,	you
have	to	deal	yourself	with	a	failure	partway	through.	Relational	databases	help	you	with	this	by
allowing	you	to	modify	multiple	records	in	a	single	transaction,	providing	ACID	guarantees	while
altering	many	rows.
All	of	this	means	that	aggregate-oriented	databases	become	more	awkward	as	you	need	to	operate

across	multiple	aggregates.	There	are	various	ways	to	deal	with	this,	which	we’ll	explore	later	in	this
chapter,	but	the	fundamental	awkwardness	remains.
This	may	imply	that	if	you	have	data	based	on	lots	of	relationships,	you	should	prefer	a	relational

database	over	a	NoSQL	store.	While	that’s	true	for	aggregate-oriented	databases,	it’s	worth
remembering	that	relational	databases	aren’t	all	that	stellar	with	complex	relationships	either.	While
you	can	express	queries	involving	joins	in	SQL,	things	quickly	get	very	hairy—both	with	SQL
writing	and	with	the	resulting	performance—as	the	number	of	joins	mounts	up.
This	makes	it	a	good	moment	to	introduce	another	category	of	databases	that’s	often	lumped	into

the	NoSQL	pile.

3.2.	Graph	Databases
Graph	databases	are	an	odd	fish	in	the	NoSQL	pond.	Most	NoSQL	databases	were	inspired	by	the

need	to	run	on	clusters,	which	led	to	aggregate-oriented	data	models	of	large	records	with	simple
connections.	Graph	databases	are	motivated	by	a	different	frustration	with	relational	databases	and
thus	have	an	opposite	model—small	records	with	complex	interconnections,	something	like	Figure
3.1.

Figure	3.1.	An	example	graph	structure
In	this	context,	a	graph	isn’t	a	bar	chart	or	histogram;	instead,	we	refer	to	a	graph	data	structure	of

nodes	connected	by	edges.
In	Figure	3.1	we	have	a	web	of	information	whose	nodes	are	very	small	(nothing	more	than	a

name)	but	there	is	a	rich	structure	of	interconnections	between	them.	With	this	structure,	we	can	ask
questions	such	as	“find	the	books	in	the	Databases	category	that	are	written	by	someone	whom	a
friend	of	mine	likes.”
Graph	databases	specialize	in	capturing	this	sort	of	information—but	on	a	much	larger	scale	than	a

readable	diagram	could	capture.	This	is	ideal	for	capturing	any	data	consisting	of	complex
relationships	such	as	social	networks,	product	preferences,	or	eligibility	rules.
The	fundamental	data	model	of	a	graph	database	is	very	simple:	nodes	connected	by	edges	(also

called	arcs).	Beyond	this	essential	characteristic	there	is	a	lot	of	variation	in	data	models—in
particular,	what	mechanisms	you	have	to	store	data	in	your	nodes	and	edges.	A	quick	sample	of	some
current	capabilities	illustrates	this	variety	of	possibilities:	FlockDB	is	simply	nodes	and	edges	with	no
mechanism	for	additional	attributes;	Neo4J	allows	you	to	attach	Java	objects	as	properties	to	nodes
and	edges	in	a	schemaless	fashion	(“Features,”	p.	113);	Infinite	Graph	stores	your	Java	objects,	which
are	subclasses	of	its	built-in	types,	as	nodes	and	edges.

Once	you	have	built	up	a	graph	of	nodes	and	edges,	a	graph	database	allows	you	to	query	that
network	with	query	operations	designed	with	this	kind	of	graph	in	mind.	This	is	where	the	important
differences	between	graph	and	relational	databases	come	in.	Although	relational	databases	can
implement	relationships	using	foreign	keys,	the	joins	required	to	navigate	around	can	get	quite
expensive—which	means	performance	is	often	poor	for	highly	connected	data	models.	Graph
databases	make	traversal	along	the	relationships	very	cheap.	A	large	part	of	this	is	because	graph
databases	shift	most	of	the	work	of	navigating	relationships	from	query	time	to	insert	time.	This
naturally	pays	off	for	situations	where	querying	performance	is	more	important	than	insert	speed.
Most	of	the	time	you	find	data	by	navigating	through	the	network	of	edges,	with	queries	such	as

“tell	me	all	the	things	that	both	Anna	and	Barbara	like.”	You	do	need	a	starting	place,	however,	so
usually	some	nodes	can	be	indexed	by	an	attribute	such	as	ID.	So	you	might	start	with	an	ID	lookup
(i.e.,	look	up	the	people	named	“Anna”	and	“Barbara”)	and	then	start	using	the	edges.	Still,	graph
databases	expect	most	of	your	query	work	to	be	navigating	relationships.
The	emphasis	on	relationships	makes	graph	databases	very	different	from	aggregate-oriented

databases.	This	data	model	difference	has	consequences	in	other	aspects,	too;	you’ll	find	such
databases	are	more	likely	to	run	on	a	single	server	rather	than	distributed	across	clusters.	ACID
transactions	need	to	cover	multiple	nodes	and	edges	to	maintain	consistency.	The	only	thing	they	have
in	common	with	aggregate-oriented	databases	is	their	rejection	of	the	relational	model	and	an
upsurge	in	attention	they	received	around	the	same	time	as	the	rest	of	the	NoSQL	field.

3.3.	Schemaless	Databases
A	common	theme	across	all	the	forms	of	NoSQL	databases	is	that	they	are	schemaless.	When	you
want	to	store	data	in	a	relational	database,	you	first	have	to	define	a	schema—a	defined	structure	for
the	database	which	says	what	tables	exist,	which	columns	exist,	and	what	data	types	each	column	can
hold.	Before	you	store	some	data,	you	have	to	have	the	schema	defined	for	it.
With	NoSQL	databases,	storing	data	is	much	more	casual.	A	key-value	store	allows	you	to	store

any	data	you	like	under	a	key.	A	document	database	effectively	does	the	same	thing,	since	it	makes	no
restrictions	on	the	structure	of	the	documents	you	store.	Column-family	databases	allow	you	to	store
any	data	under	any	column	you	like.	Graph	databases	allow	you	to	freely	add	new	edges	and	freely
add	properties	to	nodes	and	edges	as	you	wish.
Advocates	of	schemalessness	rejoice	in	this	freedom	and	flexibility.	With	a	schema,	you	have	to

figure	out	in	advance	what	you	need	to	store,	but	that	can	be	hard	to	do.	Without	a	schema	binding
you,	you	can	easily	store	whatever	you	need.	This	allows	you	to	easily	change	your	data	storage	as
you	learn	more	about	your	project.	You	can	easily	add	new	things	as	you	discover	them.
Furthermore,	if	you	find	you	don’t	need	some	things	anymore,	you	can	just	stop	storing	them,
without	worrying	about	losing	old	data	as	you	would	if	you	delete	columns	in	a	relational	schema.
As	well	as	handling	changes,	a	schemaless	store	also	makes	it	easier	to	deal	with	nonuniform	data:

data	where	each	record	has	a	different	set	of	fields.	A	schema	puts	all	rows	of	a	table	into	a
straightjacket,	which	becomes	awkward	if	you	have	different	kinds	of	data	in	different	rows.	You
either	end	up	with	lots	of	columns	that	are	usually	null	(a	sparse	table),	or	you	end	up	with
meaningless	columns	like	custom	column	4.	Schemalessness	avoids	this,	allowing	each	record	to
contain	just	what	it	needs—no	more,	no	less.
Schemalessness	is	appealing,	and	it	certainly	avoids	many	problems	that	exist	with	fixed-schema

databases,	but	it	brings	some	problems	of	its	own.	If	all	you	are	doing	is	storing	some	data	and
displaying	it	in	a	report	as	a	simple	list	of	fieldName:	value	lines	then	a	schema	is	only	going	to	get

in	the	way.	But	usually	we	do	with	our	data	more	than	this,	and	we	do	it	with	programs	that	need	to
know	that	the	billing	address	is	called	billingAddress	and	not	addressForBilling	and	that	the
quantify	field	is	going	to	be	an	integer	5	and	not	five.
The	vital,	if	sometimes	inconvenient,	fact	is	that	whenever	we	write	a	program	that	accesses	data,

that	program	almost	always	relies	on	some	form	of	implicit	schema.	Unless	it	just	says	something
like
Click	here	to	view	code	image

//pseudo	code
foreach	(Record	r	in	records)	{
		foreach	(Field	f	in	r.fields)	{
				print	(f.name,	f.value)
		}
}

it	will	assume	that	certain	field	names	are	present	and	carry	data	with	a	certain	meaning,	and	assume
something	about	the	type	of	data	stored	within	that	field.	Programs	are	not	humans;	they	cannot	read
“qty”	and	infer	that	that	must	be	the	same	as	“quantity”—at	least	not	unless	we	specifically	program
them	to	do	so.	So,	however	schemaless	our	database	is,	there	is	usually	an	implicit	schema	present.
This	implicit	schema	is	a	set	of	assumptions	about	the	data’s	structure	in	the	code	that	manipulates	the
data.
Having	the	implicit	schema	in	the	application	code	results	in	some	problems.	It	means	that	in	order

to	understand	what	data	is	present	you	have	to	dig	into	the	application	code.	If	that	code	is	well
structured	you	should	be	able	to	find	a	clear	place	from	which	to	deduce	the	schema.	But	there	are	no
guarantees;	it	all	depends	on	how	clear	the	application	code	is.	Furthermore,	the	database	remains
ignorant	of	the	schema—it	can’t	use	the	schema	to	help	it	decide	how	to	store	and	retrieve	data
efficiently.	It	can’t	apply	its	own	validations	upon	that	data	to	ensure	that	different	applications	don’t
manipulate	data	in	an	inconsistent	way.
These	are	the	reasons	why	relational	databases	have	a	fixed	schema,	and	indeed	the	reasons	why

most	databases	have	had	fixed	schemas	in	the	past.	Schemas	have	value,	and	the	rejection	of	schemas
by	NoSQL	databases	is	indeed	quite	startling.
Essentially,	a	schemaless	database	shifts	the	schema	into	the	application	code	that	accesses	it.	This

becomes	problematic	if	multiple	applications,	developed	by	different	people,	access	the	same
database.	These	problems	can	be	reduced	with	a	couple	of	approaches.	One	is	to	encapsulate	all
database	interaction	within	a	single	application	and	integrate	it	with	other	applications	using	web
services.	This	fits	in	well	with	many	people’s	current	preference	for	using	web	services	for
integration.	Another	approach	is	to	clearly	delineate	different	areas	of	an	aggregate	for	access	by
different	applications.	These	could	be	different	sections	in	a	document	database	or	different	column
families	an	a	column-family	database.
Although	NoSQL	fans	often	criticize	relational	schemas	for	having	to	be	defined	up	front	and

being	inflexible,	that’s	not	really	true.	Relational	schemas	can	be	changed	at	any	time	with	standard
SQL	commands.	If	necessary,	you	can	create	new	columns	in	an	ad-hoc	way	to	store	nonuniform	data.
We	have	only	rarely	seen	this	done,	but	it	worked	reasonably	well	where	we	have.	Most	of	the	time,
however,	nonuniformity	in	your	data	is	a	good	reason	to	favor	a	schemaless	database.
Schemalessness	does	have	a	big	impact	on	changes	of	a	database’s	structure	over	time,	particularly

for	more	uniform	data.	Although	it’s	not	practiced	as	widely	as	it	ought	to	be,	changing	a	relational
database’s	schema	can	be	done	in	a	controlled	way.	Similarly,	you	have	to	exercise	control	when
changing	how	you	store	data	in	a	schemaless	database	so	that	you	can	easily	access	both	old	and	new

data.	Furthermore,	the	flexibility	that	schemalessness	gives	you	only	applies	within	an	aggregate—if
you	need	to	change	your	aggregate	boundaries,	the	migration	is	every	bit	as	complex	as	it	is	in	the
relational	case.	We’ll	talk	more	about	database	migration	later	(“Schema	Migrations,”	p.	123).

3.4.	Materialized	Views
When	we	talked	about	aggregate-oriented	data	models,	we	stressed	their	advantages.	If	you	want	to
access	orders,	it’s	useful	to	have	all	the	data	for	an	order	contained	in	a	single	aggregate	that	can	be
stored	and	accessed	as	a	unit.	But	aggregate-orientation	has	a	corresponding	disadvantage:	What
happens	if	a	product	manager	wants	to	know	how	much	a	particular	item	has	sold	over	the	last	couple
of	weeks?	Now	the	aggregate-orientation	works	against	you,	forcing	you	to	potentially	read	every
order	in	the	database	to	answer	the	question.	You	can	reduce	this	burden	by	building	an	index	on	the
product,	but	you’re	still	working	against	the	aggregate	structure.
Relational	databases	have	an	advantage	here	because	their	lack	of	aggregate	structure	allows	them

to	support	accessing	data	in	different	ways.	Furthermore,	they	provide	a	convenient	mechanism	that
allows	you	to	look	at	data	differently	from	the	way	it’s	stored—views.	A	view	is	like	a	relational	table
(it	is	a	relation)	but	it’s	defined	by	computation	over	the	base	tables.	When	you	access	a	view,	the
database	computes	the	data	in	the	view—a	handy	form	of	encapsulation.
Views	provide	a	mechanism	to	hide	from	the	client	whether	data	is	derived	data	or	base	data—but

can’t	avoid	the	fact	that	some	views	are	expensive	to	compute.	To	cope	with	this,	materialized	views
were	invented,	which	are	views	that	are	computed	in	advance	and	cached	on	disk.	Materialized	views
are	effective	for	data	that	is	read	heavily	but	can	stand	being	somewhat	stale.
Although	NoSQL	databases	don’t	have	views,	they	may	have	precomputed	and	cached	queries,	and

they	reuse	the	term	“materialized	view”	to	describe	them.	It’s	also	much	more	of	a	central	aspect	for
aggregate-oriented	databases	than	it	is	for	relational	systems,	since	most	applications	will	have	to
deal	with	some	queries	that	don’t	fit	well	with	the	aggregate	structure.	(Often,	NoSQL	databases	create
materialized	views	using	a	map-reduce	computation,	which	we’ll	talk	about	in	Chapter	7.)
There	are	two	rough	strategies	to	building	a	materialized	view.	The	first	is	the	eager	approach

where	you	update	the	materialized	view	at	the	same	time	you	update	the	base	data	for	it.	In	this	case,
adding	an	order	would	also	update	the	purchase	history	aggregates	for	each	product.	This	approach	is
good	when	you	have	more	frequent	reads	of	the	materialized	view	than	you	have	writes	and	you	want
the	materialized	views	to	be	as	fresh	as	possible.	The	application	database	(p.	7)	approach	is	valuable
here	as	it	makes	it	easier	to	ensure	that	any	updates	to	base	data	also	update	materialized	views.
If	you	don’t	want	to	pay	that	overhead	on	each	update,	you	can	run	batch	jobs	to	update	the

materialized	views	at	regular	intervals.	You’ll	need	to	understand	your	business	requirements	to
assess	how	stale	your	materialized	views	can	be.
You	can	build	materialized	views	outside	of	the	database	by	reading	the	data,	computing	the	view,

and	saving	it	back	to	the	database.	More	often	databases	will	support	building	materialized	views
themselves.	In	this	case,	you	provide	the	computation	that	needs	to	be	done,	and	the	database	executes
the	computation	when	needed	according	to	some	parameters	that	you	configure.	This	is	particularly
handy	for	eager	updates	of	views	with	incremental	map-reduce	(“Incremental	Map-Reduce,”	p.	76).
Materialized	views	can	be	used	within	the	same	aggregate.	An	order	document	might	include	an

order	summary	element	that	provides	summary	information	about	the	order	so	that	a	query	for	an
order	summary	does	not	have	to	transfer	the	entire	order	document.	Using	different	column	families
for	materialized	views	is	a	common	feature	of	column-family	databases.	An	advantage	of	doing	this
is	that	it	allows	you	to	update	the	materialized	view	within	the	same	atomic	operation.

3.5.	Modeling	for	Data	Access
As	mentioned	earlier,	when	modeling	data	aggregates	we	need	to	consider	how	the	data	is	going	to	be
read	as	well	as	what	are	the	side	effects	on	data	related	to	those	aggregates.
Let’s	start	with	the	model	where	all	the	data	for	the	customer	is	embedded	using	a	key-value	store

(see	Figure	3.2).

Figure	3.2.	Embed	all	the	objects	for	customer	and	their	orders.
In	this	scenario,	the	application	can	read	the	customer ’s	information	and	all	the	related	data	by

using	the	key.	If	the	requirements	are	to	read	the	orders	or	the	products	sold	in	each	order,	the	whole
object	has	to	be	read	and	then	parsed	on	the	client	side	to	build	the	results.	When	references	are
needed,	we	could	switch	to	document	stores	and	then	query	inside	the	documents,	or	even	change	the
data	for	the	key-value	store	to	split	the	value	object	into	Customer	and	Order	objects	and	then	maintain
these	objects’	references	to	each	other.
With	the	references	(see	Figure	3.3),	we	can	now	find	the	orders	independently	from	the	Customer,

and	with	the	orderId	reference	in	the	Customer	we	can	find	all	Orders	for	the	Customer.	Using
aggregates	this	way	allows	for	read	optimization,	but	we	have	to	push	the	orderId	reference	into
Customer	every	time	with	a	new	Order.
Click	here	to	view	code	image

#	Customer	object
{
"customerId":	1,
"customer":	{
		"name":	"Martin",
		"billingAddress":	[{"city":	"Chicago"}],
		"payment":	[{"type":	"debit","ccinfo":	"1000-1000-1000-1000"}],
		"orders":[{"orderId":99}]
	}
}

#	Order	object
{
"customerId":	1,
"orderId":	99,
"order":{
		"orderDate":"Nov-20-2011",
		"orderItems":[{"productId":27,	"price":	32.45}],
			"orderPayment":[{"ccinfo":"1000-1000-1000-1000",
											"txnId":"abelif879rft"}],
			"shippingAddress":{"city":"Chicago"}
			}
}

Figure	3.3.	Customer	is	stored	separately	from	Order.
Aggregates	can	also	be	used	to	obtain	analytics;	for	example,	an	aggregate	update	may	fill	in

information	on	which	Orders	have	a	given	Product	in	them.	This	denormalization	of	the	data	allows
for	fast	access	to	the	data	we	are	interested	in	and	is	the	basis	for	Real	Time	BI	or	Real	Time
Analytics	where	enterprises	don’t	have	to	rely	on	end-of-the-day	batch	runs	to	populate	data
warehouse	tables	and	generate	analytics;	now	they	can	fill	in	this	type	of	data,	for	multiple	types	of
requirements,	when	the	order	is	placed	by	the	customer.
Click	here	to	view	code	image

{
"itemid":27,
"orders":{99,545,897,678}
}
{
"itemid":29,
"orders":{199,545,704,819}
}

In	document	stores,	since	we	can	query	inside	documents,	removing	references	to	Orders	from	the
Customer	object	is	possible.	This	change	allows	us	to	not	update	the	Customer	object	when	new	orders

are	placed	by	the	Customer.
Click	here	to	view	code	image

#	Customer	object
{
"customerId":	1,
"name":	"Martin",
"billingAddress":	[{"city":	"Chicago"}],
"payment":	[
		{"type":	"debit",
		"ccinfo":	"1000-1000-1000-1000"}
]
}
#	Order	object
{
"orderId":	99,
"customerId":	1,
"orderDate":"Nov-20-2011",
"orderItems":[{"productId":27,	"price":	32.45}],
"orderPayment":[{"ccinfo":"1000-1000-1000-1000",
								"txnId":"abelif879rft"}],
"shippingAddress":{"city":"Chicago"}
}

Since	document	data	stores	allow	you	to	query	by	attributes	inside	the	document,	searches	such	as
“find	all	orders	that	include	the	Refactoring	Databases	product”	are	possible,	but	the	decision	to
create	an	aggregate	of	items	and	orders	they	belong	to	is	not	based	on	the	database’s	query	capability
but	on	the	read	optimization	desired	by	the	application.
When	modeling	for	column-family	stores,	we	have	the	benefit	of	the	columns	being	ordered,

allowing	us	to	name	columns	that	are	frequently	used	so	that	they	are	fetched	first.	When	using	the
column	families	to	model	the	data,	it	is	important	to	remember	to	do	it	per	your	query	requirements
and	not	for	the	purpose	of	writing;	the	general	rule	is	to	make	it	easy	to	query	and	denormalize	the
data	during	write.
As	you	can	imagine,	there	are	multiple	ways	to	model	the	data;	one	way	is	to	store	the	Customer	and

Order	in	different	column-family	families	(see	Figure	3.4).	Here,	it	is	important	to	note	the	reference
to	all	the	orders	placed	by	the	customer	are	in	the	Customer	column	family.	Similar	other
denormalizations	are	generally	done	so	that	query	(read)	performance	is	improved.

Figure	3.4.	Conceptual	view	into	a	column	data	store
When	using	graph	databases	to	model	the	same	data,	we	model	all	objects	as	nodes	and	relations

within	them	as	relationships;	these	relationships	have	types	and	directional	significance.
Each	node	has	independent	relationships	with	other	nodes.	These	relationships	have	names	like

PURCHASED,	PAID_WITH,	or	BELONGS_TO	(see	Figure	3.5);	these	relationship	names	let	you
traverse	the	graph.	Let’s	say	you	want	to	find	all	the	Customers	who	PURCHASED	a	product	with	the
name	Refactoring	Database.	All	we	need	to	do	is	query	for	the	product	node	Refactoring	Databases
and	look	for	all	the	Customers	with	the	incoming	PURCHASED	relationship.

Figure	3.5.	Graph	model	of	e-commerce	data
This	type	of	relationship	traversal	is	very	easy	with	graph	databases.	It	is	especially	convenient

when	you	need	to	use	the	data	to	recommend	products	to	users	or	to	find	patterns	in	actions	taken	by
users.

3.6.	Key	Points
•	Aggregate-oriented	databases	make	inter-aggregate	relationships	more	difficult	to	handle	than
intra-aggregate	relationships.

•	Graph	databases	organize	data	into	node	and	edge	graphs;	they	work	best	for	data	that	has
complex	relationship	structures.

•	Schemaless	databases	allow	you	to	freely	add	fields	to	records,	but	there	is	usually	an	implicit
schema	expected	by	users	of	the	data.

•	Aggregate-oriented	databases	often	compute	materialized	views	to	provide	data	organized
differently	from	their	primary	aggregates.	This	is	often	done	with	map-reduce	computations.

Chapter	4.	Distribution	Models

The	primary	driver	of	interest	in	NoSQL	has	been	its	ability	to	run	databases	on	a	large	cluster.	As
data	volumes	increase,	it	becomes	more	difficult	and	expensive	to	scale	up—buy	a	bigger	server	to
run	the	database	on.	A	more	appealing	option	is	to	scale	out—run	the	database	on	a	cluster	of	servers.
Aggregate	orientation	fits	well	with	scaling	out	because	the	aggregate	is	a	natural	unit	to	use	for
distribution.
Depending	on	your	distribution	model,	you	can	get	a	data	store	that	will	give	you	the	ability	to

handle	larger	quantities	of	data,	the	ability	to	process	a	greater	read	or	write	traffic,	or	more
availability	in	the	face	of	network	slowdowns	or	breakages.	These	are	often	important	benefits,	but
they	come	at	a	cost.	Running	over	a	cluster	introduces	complexity—so	it’s	not	something	to	do	unless
the	benefits	are	compelling.
Broadly,	there	are	two	paths	to	data	distribution:	replication	and	sharding.	Replication	takes	the

same	data	and	copies	it	over	multiple	nodes.	Sharding	puts	different	data	on	different	nodes.
Replication	and	sharding	are	orthogonal	techniques:	You	can	use	either	or	both	of	them.	Replication
comes	into	two	forms:	master-slave	and	peer-to-peer.	We	will	now	discuss	these	techniques	starting	at
the	simplest	and	working	up	to	the	more	complex:	first	single-server,	then	master-slave	replication,
then	sharding,	and	finally	peer-to-peer	replication.

4.1.	Single	Server
The	first	and	the	simplest	distribution	option	is	the	one	we	would	most	often	recommend—no
distribution	at	all.	Run	the	database	on	a	single	machine	that	handles	all	the	reads	and	writes	to	the	data
store.	We	prefer	this	option	because	it	eliminates	all	the	complexities	that	the	other	options	introduce;
it’s	easy	for	operations	people	to	manage	and	easy	for	application	developers	to	reason	about.
Although	a	lot	of	NoSQL	databases	are	designed	around	the	idea	of	running	on	a	cluster,	it	can

make	sense	to	use	NoSQL	with	a	single-server	distribution	model	if	the	data	model	of	the	NoSQL
store	is	more	suited	to	the	application.	Graph	databases	are	the	obvious	category	here—these	work
best	in	a	single-server	configuration.	If	your	data	usage	is	mostly	about	processing	aggregates,	then	a
single-server	document	or	key-value	store	may	well	be	worthwhile	because	it’s	easier	on	application
developers.
For	the	rest	of	this	chapter	we’ll	be	wading	through	the	advantages	and	complications	of	more

sophisticated	distribution	schemes.	Don’t	let	the	volume	of	words	fool	you	into	thinking	that	we
would	prefer	these	options.	If	we	can	get	away	without	distributing	our	data,	we	will	always	choose	a
single-server	approach.

4.2.	Sharding
Often,	a	busy	data	store	is	busy	because	different	people	are	accessing	different	parts	of	the	dataset.	In
these	circumstances	we	can	support	horizontal	scalability	by	putting	different	parts	of	the	data	onto
different	servers—a	technique	that’s	called	sharding	(see	Figure	4.1).

Figure	4.1.	Sharding	puts	different	data	on	separate	nodes,	each	of	which	does	its	own	reads	and
writes.

In	the	ideal	case,	we	have	different	users	all	talking	to	different	server	nodes.	Each	user	only	has	to
talk	to	one	server,	so	gets	rapid	responses	from	that	server.	The	load	is	balanced	out	nicely	between
servers—for	example,	if	we	have	ten	servers,	each	one	only	has	to	handle	10%	of	the	load.
Of	course	the	ideal	case	is	a	pretty	rare	beast.	In	order	to	get	close	to	it	we	have	to	ensure	that	data

that’s	accessed	together	is	clumped	together	on	the	same	node	and	that	these	clumps	are	arranged	on
the	nodes	to	provide	the	best	data	access.
The	first	part	of	this	question	is	how	to	clump	the	data	up	so	that	one	user	mostly	gets	her	data	from

a	single	server.	This	is	where	aggregate	orientation	comes	in	really	handy.	The	whole	point	of
aggregates	is	that	we	design	them	to	combine	data	that’s	commonly	accessed	together—so	aggregates
leap	out	as	an	obvious	unit	of	distribution.
When	it	comes	to	arranging	the	data	on	the	nodes,	there	are	several	factors	that	can	help	improve

performance.	If	you	know	that	most	accesses	of	certain	aggregates	are	based	on	a	physical	location,
you	can	place	the	data	close	to	where	it’s	being	accessed.	If	you	have	orders	for	someone	who	lives	in
Boston,	you	can	place	that	data	in	your	eastern	US	data	center.
Another	factor	is	trying	to	keep	the	load	even.	This	means	that	you	should	try	to	arrange

aggregates	so	they	are	evenly	distributed	across	the	nodes	which	all	get	equal	amounts	of	the	load.
This	may	vary	over	time,	for	example	if	some	data	tends	to	be	accessed	on	certain	days	of	the	week—
so	there	may	be	domain-specific	rules	you’d	like	to	use.
In	some	cases,	it’s	useful	to	put	aggregates	together	if	you	think	they	may	be	read	in	sequence.	The

Bigtable	paper	[Chang	etc.]	described	keeping	its	rows	in	lexicographic	order	and	sorting	web
addresses	based	on	reversed	domain	names	(e.g.,	com.martinfowler).	This	way	data	for	multiple
pages	could	be	accessed	together	to	improve	processing	efficiency.
Historically	most	people	have	done	sharding	as	part	of	application	logic.	You	might	put	all

customers	with	surnames	starting	from	A	to	D	on	one	shard	and	E	to	G	on	another.	This	complicates
the	programming	model,	as	application	code	needs	to	ensure	that	queries	are	distributed	across	the

various	shards.	Furthermore,	rebalancing	the	sharding	means	changing	the	application	code	and
migrating	the	data.	Many	NoSQL	databases	offer	auto-sharding,	where	the	database	takes	on	the
responsibility	of	allocating	data	to	shards	and	ensuring	that	data	access	goes	to	the	right	shard.	This
can	make	it	much	easier	to	use	sharding	in	an	application.
Sharding	is	particularly	valuable	for	performance	because	it	can	improve	both	read	and	write

performance.	Using	replication,	particularly	with	caching,	can	greatly	improve	read	performance	but
does	little	for	applications	that	have	a	lot	of	writes.	Sharding	provides	a	way	to	horizontally	scale
writes.
Sharding	does	little	to	improve	resilience	when	used	alone.	Although	the	data	is	on	different	nodes,

a	node	failure	makes	that	shard’s	data	unavailable	just	as	surely	as	it	does	for	a	single-server	solution.
The	resilience	benefit	it	does	provide	is	that	only	the	users	of	the	data	on	that	shard	will	suffer;
however,	it’s	not	good	to	have	a	database	with	part	of	its	data	missing.	With	a	single	server	it’s	easier
to	pay	the	effort	and	cost	to	keep	that	server	up	and	running;	clusters	usually	try	to	use	less	reliable
machines,	and	you’re	more	likely	to	get	a	node	failure.	So	in	practice,	sharding	alone	is	likely	to
decrease	resilience.
Despite	the	fact	that	sharding	is	made	much	easier	with	aggregates,	it’s	still	not	a	step	to	be	taken

lightly.	Some	databases	are	intended	from	the	beginning	to	use	sharding,	in	which	case	it’s	wise	to	run
them	on	a	cluster	from	the	very	beginning	of	development,	and	certainly	in	production.	Other
databases	use	sharding	as	a	deliberate	step	up	from	a	single-server	configuration,	in	which	case	it’s
best	to	start	single-server	and	only	use	sharding	once	your	load	projections	clearly	indicate	that	you
are	running	out	of	headroom.
In	any	case	the	step	from	a	single	node	to	sharding	is	going	to	be	tricky.	We	have	heard	tales	of

teams	getting	into	trouble	because	they	left	sharding	to	very	late,	so	when	they	turned	it	on	in
production	their	database	became	essentially	unavailable	because	the	sharding	support	consumed	all
the	database	resources	for	moving	the	data	onto	new	shards.	The	lesson	here	is	to	use	sharding	well
before	you	need	to—when	you	have	enough	headroom	to	carry	out	the	sharding.

4.3.	Master-Slave	Replication
With	master-slave	distribution,	you	replicate	data	across	multiple	nodes.	One	node	is	designated	as
the	master,	or	primary.	This	master	is	the	authoritative	source	for	the	data	and	is	usually	responsible
for	processing	any	updates	to	that	data.	The	other	nodes	are	slaves,	or	secondaries.	A	replication
process	synchronizes	the	slaves	with	the	master	(see	Figure	4.2).

Figure	4.2.	Data	is	replicated	from	master	to	slaves.	The	master	services	all	writes;	reads	may
come	from	either	master	or	slaves.

Master-slave	replication	is	most	helpful	for	scaling	when	you	have	a	read-intensive	dataset.	You
can	scale	horizontally	to	handle	more	read	requests	by	adding	more	slave	nodes	and	ensuring	that	all
read	requests	are	routed	to	the	slaves.	You	are	still,	however,	limited	by	the	ability	of	the	master	to
process	updates	and	its	ability	to	pass	those	updates	on.	Consequently	it	isn’t	such	a	good	scheme	for
datasets	with	heavy	write	traffic,	although	offloading	the	read	traffic	will	help	a	bit	with	handling	the
write	load.
A	second	advantage	of	master-slave	replication	is	read	resilience:	Should	the	master	fail,	the	slaves

can	still	handle	read	requests.	Again,	this	is	useful	if	most	of	your	data	access	is	reads.	The	failure	of
the	master	does	eliminate	the	ability	to	handle	writes	until	either	the	master	is	restored	or	a	new
master	is	appointed.	However,	having	slaves	as	replicates	of	the	master	does	speed	up	recovery	after	a
failure	of	the	master	since	a	slave	can	be	appointed	a	new	master	very	quickly.
The	ability	to	appoint	a	slave	to	replace	a	failed	master	means	that	master-slave	replication	is

useful	even	if	you	don’t	need	to	scale	out.	All	read	and	write	traffic	can	go	to	the	master	while	the
slave	acts	as	a	hot	backup.	In	this	case	it’s	easiest	to	think	of	the	system	as	a	single-server	store	with	a
hot	backup.	You	get	the	convenience	of	the	single-server	configuration	but	with	greater	resilience—
which	is	particularly	handy	if	you	want	to	be	able	to	handle	server	failures	gracefully.
Masters	can	be	appointed	manually	or	automatically.	Manual	appointing	typically	means	that	when

you	configure	your	cluster,	you	configure	one	node	as	the	master.	With	automatic	appointment,	you
create	a	cluster	of	nodes	and	they	elect	one	of	themselves	to	be	the	master.	Apart	from	simpler
configuration,	automatic	appointment	means	that	the	cluster	can	automatically	appoint	a	new	master

when	a	master	fails,	reducing	downtime.
In	order	to	get	read	resilience,	you	need	to	ensure	that	the	read	and	write	paths	into	your

application	are	different,	so	that	you	can	handle	a	failure	in	the	write	path	and	still	read.	This	includes
such	things	as	putting	the	reads	and	writes	through	separate	database	connections—a	facility	that	is
not	often	supported	by	database	interaction	libraries.	As	with	any	feature,	you	cannot	be	sure	you	have
read	resilience	without	good	tests	that	disable	the	writes	and	check	that	reads	still	occur.
Replication	comes	with	some	alluring	benefits,	but	it	also	comes	with	an	inevitable	dark	side—

inconsistency.	You	have	the	danger	that	different	clients,	reading	different	slaves,	will	see	different
values	because	the	changes	haven’t	all	propagated	to	the	slaves.	In	the	worst	case,	that	can	mean	that	a
client	cannot	read	a	write	it	just	made.	Even	if	you	use	master-slave	replication	just	for	hot	backup
this	can	be	a	concern,	because	if	the	master	fails,	any	updates	not	passed	on	to	the	backup	are	lost.
We’ll	talk	about	how	to	deal	with	these	issues	later	(“Consistency,”	p.	47).

4.4.	Peer-to-Peer	Replication
Master-slave	replication	helps	with	read	scalability	but	doesn’t	help	with	scalability	of	writes.	It
provides	resilience	against	failure	of	a	slave,	but	not	of	a	master.	Essentially,	the	master	is	still	a
bottleneck	and	a	single	point	of	failure.	Peer-to-peer	replication	(see	Figure	4.3)	attacks	these
problems	by	not	having	a	master.	All	the	replicas	have	equal	weight,	they	can	all	accept	writes,	and	the
loss	of	any	of	them	doesn’t	prevent	access	to	the	data	store.

Figure	4.3.	Peer-to-peer	replication	has	all	nodes	applying	reads	and	writes	to	all	the	data.
The	prospect	here	looks	mighty	fine.	With	a	peer-to-peer	replication	cluster,	you	can	ride	over

node	failures	without	losing	access	to	data.	Furthermore,	you	can	easily	add	nodes	to	improve	your
performance.	There’s	much	to	like	here—but	there	are	complications.
The	biggest	complication	is,	again,	consistency.	When	you	can	write	to	two	different	places,	you

run	the	risk	that	two	people	will	attempt	to	update	the	same	record	at	the	same	time—a	write-write
conflict.	Inconsistencies	on	read	lead	to	problems	but	at	least	they	are	relatively	transient.	Inconsistent
writes	are	forever.
We’ll	talk	more	about	how	to	deal	with	write	inconsistencies	later	on,	but	for	the	moment	we’ll

note	a	couple	of	broad	options.	At	one	end,	we	can	ensure	that	whenever	we	write	data,	the	replicas
coordinate	to	ensure	we	avoid	a	conflict.	This	can	give	us	just	as	strong	a	guarantee	as	a	master,	albeit
at	the	cost	of	network	traffic	to	coordinate	the	writes.	We	don’t	need	all	the	replicas	to	agree	on	the
write,	just	a	majority,	so	we	can	still	survive	losing	a	minority	of	the	replica	nodes.
At	the	other	extreme,	we	can	decide	to	cope	with	an	inconsistent	write.	There	are	contexts	when	we

can	come	up	with	policy	to	merge	inconsistent	writes.	In	this	case	we	can	get	the	full	performance
benefit	of	writing	to	any	replica.
These	points	are	at	the	ends	of	a	spectrum	where	we	trade	off	consistency	for	availability.

4.5.	Combining	Sharding	and	Replication
Replication	and	sharding	are	strategies	that	can	be	combined.	If	we	use	both	master-slave	replication
and	sharding	(see	Figure	4.4),	this	means	that	we	have	multiple	masters,	but	each	data	item	only	has	a
single	master.	Depending	on	your	configuration,	you	may	choose	a	node	to	be	a	master	for	some	data
and	slaves	for	others,	or	you	may	dedicate	nodes	for	master	or	slave	duties.

Figure	4.4.	Using	master-slave	replication	together	with	sharding
Using	peer-to-peer	replication	and	sharding	is	a	common	strategy	for	column-family	databases.	In

a	scenario	like	this	you	might	have	tens	or	hundreds	of	nodes	in	a	cluster	with	data	sharded	over
them.	A	good	starting	point	for	peer-to-peer	replication	is	to	have	a	replication	factor	of	3,	so	each
shard	is	present	on	three	nodes.	Should	a	node	fail,	then	the	shards	on	that	node	will	be	built	on	the
other	nodes	(see	Figure	4.5).

Figure	4.5.	Using	peer-to-peer	replication	together	with	sharding

4.6.	Key	Points
•	There	are	two	styles	of	distributing	data:
•	Sharding	distributes	different	data	across	multiple	servers,	so	each	server	acts	as	the	single
source	for	a	subset	of	data.

•	Replication	copies	data	across	multiple	servers,	so	each	bit	of	data	can	be	found	in	multiple
places.

A	system	may	use	either	or	both	techniques.
•	Replication	comes	in	two	forms:
•	Master-slave	replication	makes	one	node	the	authoritative	copy	that	handles	writes	while
slaves	synchronize	with	the	master	and	may	handle	reads.

•	Peer-to-peer	replication	allows	writes	to	any	node;	the	nodes	coordinate	to	synchronize	their
copies	of	the	data.

Master-slave	replication	reduces	the	chance	of	update	conflicts	but	peer-to-peer	replication
avoids	loading	all	writes	onto	a	single	point	of	failure.

Chapter	5.	Consistency

One	of	the	biggest	changes	from	a	centralized	relational	database	to	a	cluster-oriented	NoSQL
database	is	in	how	you	think	about	consistency.	Relational	databases	try	to	exhibit	strong	consistency
by	avoiding	all	the	various	inconsistencies	that	we’ll	shortly	be	discussing.	Once	you	start	looking	at
the	NoSQL	world,	phrases	such	as	“CAP	theorem”	and	“eventual	consistency”	appear,	and	as	soon	as
you	start	building	something	you	have	to	think	about	what	sort	of	consistency	you	need	for	your
system.
Consistency	comes	in	various	forms,	and	that	one	word	covers	a	myriad	of	ways	errors	can	creep

into	your	life.	So	we’re	going	to	begin	by	talking	about	the	various	shapes	consistency	can	take.	After
that	we’ll	discuss	why	you	may	want	to	relax	consistency	(and	its	big	sister,	durability).

5.1.	Update	Consistency
We’ll	begin	by	considering	updating	a	telephone	number.	Coincidentally,	Martin	and	Pramod	are
looking	at	the	company	website	and	notice	that	the	phone	number	is	out	of	date.	Implausibly,	they	both
have	update	access,	so	they	both	go	in	at	the	same	time	to	update	the	number.	To	make	the	example
interesting,	we’ll	assume	they	update	it	slightly	differently,	because	each	uses	a	slightly	different
format.	This	issue	is	called	a	write-write	conflict:	two	people	updating	the	same	data	item	at	the	same
time.
When	the	writes	reach	the	server,	the	server	will	serialize	them—decide	to	apply	one,	then	the

other.	Let’s	assume	it	uses	alphabetical	order	and	picks	Martin’s	update	first,	then	Pramod’s.	Without
any	concurrency	control,	Martin’s	update	would	be	applied	and	immediately	overwritten	by
Pramod’s.	In	this	case	Martin’s	is	a	lost	update.	Here	the	lost	update	is	not	a	big	problem,	but	often	it
is.	We	see	this	as	a	failure	of	consistency	because	Pramod’s	update	was	based	on	the	state	before
Martin’s	update,	yet	was	applied	after	it.
Approaches	for	maintaining	consistency	in	the	face	of	concurrency	are	often	described	as

pessimistic	or	optimistic.	A	pessimistic	approach	works	by	preventing	conflicts	from	occurring;	an
optimistic	approach	lets	conflicts	occur,	but	detects	them	and	takes	action	to	sort	them	out.	For	update
conflicts,	the	most	common	pessimistic	approach	is	to	have	write	locks,	so	that	in	order	to	change	a
value	you	need	to	acquire	a	lock,	and	the	system	ensures	that	only	one	client	can	get	a	lock	at	a	time.
So	Martin	and	Pramod	would	both	attempt	to	acquire	the	write	lock,	but	only	Martin	(the	first	one)
would	succeed.	Pramod	would	then	see	the	result	of	Martin’s	write	before	deciding	whether	to	make
his	own	update.
A	common	optimistic	approach	is	a	conditional	update	where	any	client	that	does	an	update	tests

the	value	just	before	updating	it	to	see	if	it’s	changed	since	his	last	read.	In	this	case,	Martin’s	update
would	succeed	but	Pramod’s	would	fail.	The	error	would	let	Pramod	know	that	he	should	look	at	the
value	again	and	decide	whether	to	attempt	a	further	update.
Both	the	pessimistic	and	optimistic	approaches	that	we’ve	just	described	rely	on	a	consistent

serialization	of	the	updates.	With	a	single	server,	this	is	obvious—it	has	to	choose	one,	then	the	other.
But	if	there’s	more	than	one	server,	such	as	with	peer-to-peer	replication,	then	two	nodes	might	apply
the	updates	in	a	different	order,	resulting	in	a	different	value	for	the	telephone	number	on	each	peer.
Often,	when	people	talk	about	concurrency	in	distributed	systems,	they	talk	about	sequential
consistency—ensuring	that	all	nodes	apply	operations	in	the	same	order.
There	is	another	optimistic	way	to	handle	a	write-write	conflict—save	both	updates	and	record	that

they	are	in	conflict.	This	approach	is	familiar	to	many	programmers	from	version	control	systems,
particularly	distributed	version	control	systems	that	by	their	nature	will	often	have	conflicting
commits.	The	next	step	again	follows	from	version	control:	You	have	to	merge	the	two	updates
somehow.	Maybe	you	show	both	values	to	the	user	and	ask	them	to	sort	it	out—this	is	what	happens	if
you	update	the	same	contact	on	your	phone	and	your	computer.	Alternatively,	the	computer	may	be
able	to	perform	the	merge	itself;	if	it	was	a	phone	formatting	issue,	it	may	be	able	to	realize	that	and
apply	the	new	number	with	the	standard	format.	Any	automated	merge	of	write-write	conflicts	is
highly	domain-specific	and	needs	to	be	programmed	for	each	particular	case.
Often,	when	people	first	encounter	these	issues,	their	reaction	is	to	prefer	pessimistic	concurrency

because	they	are	determined	to	avoid	conflicts.	While	in	some	cases	this	is	the	right	answer,	there	is
always	a	tradeoff.	Concurrent	programming	involves	a	fundamental	tradeoff	between	safety
(avoiding	errors	such	as	update	conflicts)	and	liveness	(responding	quickly	to	clients).	Pessimistic
approaches	often	severely	degrade	the	responsiveness	of	a	system	to	the	degree	that	it	becomes	unfit
for	its	purpose.	This	problem	is	made	worse	by	the	danger	of	errors—pessimistic	concurrency	often
leads	to	deadlocks,	which	are	hard	to	prevent	and	debug.
Replication	makes	it	much	more	likely	to	run	into	write-write	conflicts.	If	different	nodes	have

different	copies	of	some	data	which	can	be	independently	updated,	then	you’ll	get	conflicts	unless	you
take	specific	measures	to	avoid	them.	Using	a	single	node	as	the	target	for	all	writes	for	some	data
makes	it	much	easier	to	maintain	update	consistency.	Of	the	distribution	models	we	discussed	earlier,
all	but	peer-to-peer	replication	do	this.

5.2.	Read	Consistency
Having	a	data	store	that	maintains	update	consistency	is	one	thing,	but	it	doesn’t	guarantee	that
readers	of	that	data	store	will	always	get	consistent	responses	to	their	requests.	Let’s	imagine	we	have
an	order	with	line	items	and	a	shipping	charge.	The	shipping	charge	is	calculated	based	on	the	line
items	in	the	order.	If	we	add	a	line	item,	we	thus	also	need	to	recalculate	and	update	the	shipping
charge.	In	a	relational	database,	the	shipping	charge	and	line	items	will	be	in	separate	tables.	The
danger	of	inconsistency	is	that	Martin	adds	a	line	item	to	his	order,	Pramod	then	reads	the	line	items
and	shipping	charge,	and	then	Martin	updates	the	shipping	charge.	This	is	an	inconsistent	read	or
read-write	conflict:	In	Figure	5.1	Pramod	has	done	a	read	in	the	middle	of	Martin’s	write.

Figure	5.1.	A	read-write	conflict	in	logical	consistency
We	refer	to	this	type	of	consistency	as	logical	consistency:	ensuring	that	different	data	items	make

sense	together.	To	avoid	a	logically	inconsistent	read-write	conflict,	relational	databases	support	the
notion	of	transactions.	Providing	Martin	wraps	his	two	writes	in	a	transaction,	the	system	guarantees
that	Pramod	will	either	read	both	data	items	before	the	update	or	both	after	the	update.
A	common	claim	we	hear	is	that	NoSQL	databases	don’t	support	transactions	and	thus	can’t	be

consistent.	Such	claim	is	mostly	wrong	because	it	glosses	over	lots	of	important	details.	Our	first
clarification	is	that	any	statement	about	lack	of	transactions	usually	only	applies	to	some	NoSQL
databases,	in	particular	the	aggregate-oriented	ones.	In	contrast,	graph	databases	tend	to	support	ACID
transactions	just	the	same	as	relational	databases.
Secondly,	aggregate-oriented	databases	do	support	atomic	updates,	but	only	within	a	single

aggregate.	This	means	that	you	will	have	logical	consistency	within	an	aggregate	but	not	between
aggregates.	So	in	the	example,	you	could	avoid	running	into	that	inconsistency	if	the	order,	the
delivery	charge,	and	the	line	items	are	all	part	of	a	single	order	aggregate.
Of	course	not	all	data	can	be	put	in	the	same	aggregate,	so	any	update	that	affects	multiple

aggregates	leaves	open	a	time	when	clients	could	perform	an	inconsistent	read.	The	length	of	time	an
inconsistency	is	present	is	called	the	inconsistency	window.	A	NoSQL	system	may	have	a	quite	short
inconsistency	window:	As	one	data	point,	Amazon’s	documentation	says	that	the	inconsistency
window	for	its	SimpleDB	service	is	usually	less	than	a	second.
This	example	of	a	logically	inconsistent	read	is	the	classic	example	that	you’ll	see	in	any	book	that

touches	database	programming.	Once	you	introduce	replication,	however,	you	get	a	whole	new	kind
of	inconsistency.	Let’s	imagine	there’s	one	last	hotel	room	for	a	desirable	event.	The	hotel
reservation	system	runs	on	many	nodes.	Martin	and	Cindy	are	a	couple	considering	this	room,	but
they	are	discussing	this	on	the	phone	because	Martin	is	in	London	and	Cindy	is	in	Boston.	Meanwhile
Pramod,	who	is	in	Mumbai,	goes	and	books	that	last	room.	That	updates	the	replicated	room
availability,	but	the	update	gets	to	Boston	quicker	than	it	gets	to	London.	When	Martin	and	Cindy	fire
up	their	browsers	to	see	if	the	room	is	available,	Cindy	sees	it	booked	and	Martin	sees	it	free.	This	is
another	inconsistent	read—but	it’s	a	breach	of	a	different	form	of	consistency	we	call	replication
consistency:	ensuring	that	the	same	data	item	has	the	same	value	when	read	from	different	replicas
(see	Figure	5.2).

Figure	5.2.	An	example	of	replication	inconsistency
Eventually,	of	course,	the	updates	will	propagate	fully,	and	Martin	will	see	the	room	is	fully

booked.	Therefore	this	situation	is	generally	referred	to	as	eventually	consistent,	meaning	that	at	any
time	nodes	may	have	replication	inconsistencies	but,	if	there	are	no	further	updates,	eventually	all
nodes	will	be	updated	to	the	same	value.	Data	that	is	out	of	date	is	generally	referred	to	as	stale,	which
reminds	us	that	a	cache	is	another	form	of	replication—essentially	following	the	master-slave
distribution	model.
Although	replication	consistency	is	independent	from	logical	consistency,	replication	can

exacerbate	a	logical	inconsistency	by	lengthening	its	inconsistency	window.	Two	different	updates	on
the	master	may	be	performed	in	rapid	succession,	leaving	an	inconsistency	window	of	milliseconds.
But	delays	in	networking	could	mean	that	the	same	inconsistency	window	lasts	for	much	longer	on	a
slave.
Consistency	guarantees	aren’t	something	that’s	global	to	an	application.	You	can	usually	specify	the

level	of	consistency	you	want	with	individual	requests.	This	allows	you	to	use	weak	consistency	most
of	the	time	when	it	isn’t	an	issue,	but	request	strong	consistency	when	it	is.
The	presence	of	an	inconsistency	window	means	that	different	people	will	see	different	things	at	the

same	time.	If	Martin	and	Cindy	are	looking	at	rooms	while	on	a	transatlantic	call,	it	can	cause
confusion.	It’s	more	common	for	users	to	act	independently,	and	then	this	is	not	a	problem.	But
inconsistency	windows	can	be	particularly	problematic	when	you	get	inconsistencies	with	yourself.
Consider	the	example	of	posting	comments	on	a	blog	entry.	Few	people	are	going	to	worry	about
inconsistency	windows	of	even	a	few	minutes	while	people	are	typing	in	their	latest	thoughts.	Often,
systems	handle	the	load	of	such	sites	by	running	on	a	cluster	and	load-balancing	incoming	requests	to
different	nodes.	Therein	lies	a	danger:	You	may	post	a	message	using	one	node,	then	refresh	your
browser,	but	the	refresh	goes	to	a	different	node	which	hasn’t	received	your	post	yet—and	it	looks
like	your	post	was	lost.
In	situations	like	this,	you	can	tolerate	reasonably	long	inconsistency	windows,	but	you	need	read-

your-writes	consistency	which	means	that,	once	you’ve	made	an	update,	you’re	guaranteed	to
continue	seeing	that	update.	One	way	to	get	this	in	an	otherwise	eventually	consistent	system	is	to
provide	session	consistency:	Within	a	user ’s	session	there	is	read-your-writes	consistency.	This	does
mean	that	the	user	may	lose	that	consistency	should	their	session	end	for	some	reason	or	should	the
user	access	the	same	system	simultaneously	from	different	computers,	but	these	cases	are	relatively
rare.
There	are	a	couple	of	techniques	to	provide	session	consistency.	A	common	way,	and	often	the

easiest	way,	is	to	have	a	sticky	session:	a	session	that’s	tied	to	one	node	(this	is	also	called	session
affinity).	A	sticky	session	allows	you	to	ensure	that	as	long	as	you	keep	read-your-writes	consistency
on	a	node,	you’ll	get	it	for	sessions	too.	The	downside	is	that	sticky	sessions	reduce	the	ability	of	the
load	balancer	to	do	its	job.
Another	approach	for	session	consistency	is	to	use	version	stamps	(“Version	Stamps,”	p.	61)	and

ensure	every	interaction	with	the	data	store	includes	the	latest	version	stamp	seen	by	a	session.	The
server	node	must	then	ensure	that	it	has	the	updates	that	include	that	version	stamp	before	responding
to	a	request.
Maintaining	session	consistency	with	sticky	sessions	and	master-slave	replication	can	be	awkward

if	you	want	to	read	from	the	slaves	to	improve	read	performance	but	still	need	to	write	to	the	master.
One	way	of	handling	this	is	for	writes	to	be	sent	the	slave,	who	then	takes	responsibility	for
forwarding	them	to	the	master	while	maintaining	session	consistency	for	its	client.	Another	approach
is	to	switch	the	session	to	the	master	temporarily	when	doing	a	write,	just	long	enough	that	reads	are
done	from	the	master	until	the	slaves	have	caught	up	with	the	update.
We’re	talking	about	replication	consistency	in	the	context	of	a	data	store,	but	it’s	also	an	important

factor	in	overall	application	design.	Even	a	simple	database	system	will	have	lots	of	occasions	where
data	is	presented	to	a	user,	the	user	cogitates,	and	then	updates	that	data.	It’s	usually	a	bad	idea	to	keep
a	transaction	open	during	user	interaction	because	there’s	a	real	danger	of	conflicts	when	the	user
tries	to	make	her	update,	which	leads	to	such	approaches	as	offline	locks	[Fowler	PoEAA].

5.3.	Relaxing	Consistency
Consistency	is	a	Good	Thing—but,	sadly,	sometimes	we	have	to	sacrifice	it.	It	is	always	possible	to
design	a	system	to	avoid	inconsistencies,	but	often	impossible	to	do	so	without	making	unbearable
sacrifices	in	other	characteristics	of	the	system.	As	a	result,	we	often	have	to	tradeoff	consistency	for
something	else.	While	some	architects	see	this	as	a	disaster,	we	see	it	as	part	of	the	inevitable
tradeoffs	involved	in	system	design.	Furthermore,	different	domains	have	different	tolerances	for
inconsistency,	and	we	need	to	take	this	tolerance	into	account	as	we	make	our	decisions.
Trading	off	consistency	is	a	familiar	concept	even	in	single-server	relational	database	systems.

Here,	our	principal	tool	to	enforce	consistency	is	the	transaction,	and	transactions	can	provide	strong
consistency	guarantees.	However,	transaction	systems	usually	come	with	the	ability	to	relax	isolation
levels,	allowing	queries	to	read	data	that	hasn’t	been	committed	yet,	and	in	practice	we	see	most
applications	relax	consistency	down	from	the	highest	isolation	level	(serialized)	in	order	to	get
effective	performance.	We	most	commonly	see	people	using	the	read-committed	transaction	level,
which	eliminates	some	read-write	conflicts	but	allows	others.
Many	systems	forgo	transactions	entirely	because	the	performance	impact	of	transactions	is	too

high.	We’ve	seen	this	in	a	couple	different	ways.	On	a	small	scale,	we	saw	the	popularity	of	MySQL
during	the	days	when	it	didn’t	support	transactions.	Many	websites	liked	the	high	speed	of	MySQL	and
were	prepared	to	live	without	transactions.	At	the	other	end	of	the	scale,	some	very	large	websites,
such	as	eBay	[Pritchett],	have	had	to	forgo	transactions	in	order	to	perform	acceptably—this	is
particularly	true	when	you	need	to	introduce	sharding.	Even	without	these	constraints,	many
application	builders	need	to	interact	with	remote	systems	that	can’t	be	properly	included	within	a
transaction	boundary,	so	updating	outside	of	transactions	is	a	quite	common	occurrence	for
enterprise	applications.

5.3.1.	The	CAP	Theorem
In	the	NoSQL	world	it’s	common	to	refer	to	the	CAP	theorem	as	the	reason	why	you	may	need	to
relax	consistency.	It	was	originally	proposed	by	Eric	Brewer	in	2000	[Brewer]	and	given	a	formal
proof	by	Seth	Gilbert	and	Nancy	Lynch	[Lynch	and	Gilbert]	a	couple	of	years	later.	(You	may	also
hear	this	referred	to	as	Brewer ’s	Conjecture.)
The	basic	statement	of	the	CAP	theorem	is	that,	given	the	three	properties	of	Consistency,

Availability,	and	Partition	tolerance,	you	can	only	get	two.	Obviously	this	depends	very	much	on	how
you	define	these	three	properties,	and	differing	opinions	have	led	to	several	debates	on	what	the	real
consequences	of	the	CAP	theorem	are.
Consistency	is	pretty	much	as	we’ve	defined	it	so	far.	Availability	has	a	particular	meaning	in	the

context	of	CAP—it	means	that	if	you	can	talk	to	a	node	in	the	cluster,	it	can	read	and	write	data.	That’s
subtly	different	from	the	usual	meaning,	which	we’ll	explore	later.	Partition	tolerance	means	that	the
cluster	can	survive	communication	breakages	in	the	cluster	that	separate	the	cluster	into	multiple
partitions	unable	to	communicate	with	each	other	(situation	known	as	a	split	brain,	see	Figure	5.3).

Figure	5.3.	With	two	breaks	in	the	communication	lines,	the	network	partitions	into	two	groups.
A	single-server	system	is	the	obvious	example	of	a	CA	system—a	system	that	has	Consistency	and

Availability	but	not	Partition	tolerance.	A	single	machine	can’t	partition,	so	it	does	not	have	to	worry
about	partition	tolerance.	There’s	only	one	node—so	if	it’s	up,	it’s	available.	Being	up	and	keeping
consistency	is	reasonable.	This	is	the	world	that	most	relational	database	systems	live	in.
It	is	theoretically	possible	to	have	a	CA	cluster.	However,	this	would	mean	that	if	a	partition	ever

occurs	in	the	cluster,	all	the	nodes	in	the	cluster	would	go	down	so	that	no	client	can	talk	to	a	node.	By
the	usual	definition	of	“available,”	this	would	mean	a	lack	of	availability,	but	this	is	where	CAP’s
special	usage	of	“availability”	gets	confusing.	CAP	defines	“availability”	to	mean	“every	request
received	by	a	nonfailing	node	in	the	system	must	result	in	a	response”	[Lynch	and	Gilbert].	So	a
failed,	unresponsive	node	doesn’t	infer	a	lack	of	CAP	availability.
This	does	imply	that	you	can	build	a	CA	cluster,	but	you	have	to	ensure	it	will	only	partition	rarely

and	completely.	This	can	be	done,	at	least	within	a	data	center,	but	it’s	usually	prohibitively	expensive.
Remember	that	in	order	to	bring	down	all	the	nodes	in	a	cluster	on	a	partition,	you	also	have	to	detect
the	partition	in	a	timely	manner—which	itself	is	no	small	feat.
So	clusters	have	to	be	tolerant	of	network	partitions.	And	here	is	the	real	point	of	the	CAP	theorem.

Although	the	CAP	theorem	is	often	stated	as	“you	can	only	get	two	out	of	three,”	in	practice	what	it’s
saying	is	that	in	a	system	that	may	suffer	partitions,	as	distributed	system	do,	you	have	to	trade	off
consistency	versus	availability.	This	isn’t	a	binary	decision;	often,	you	can	trade	off	a	little
consistency	to	get	some	availability.	The	resulting	system	would	be	neither	perfectly	consistent	nor
perfectly	available—but	would	have	a	combination	that	is	reasonable	for	your	particular	needs.
An	example	should	help	illustrate	this.	Martin	and	Pramod	are	both	trying	to	book	the	last	hotel

room	on	a	system	that	uses	peer-to-peer	distribution	with	two	nodes	(London	for	Martin	and	Mumbai
for	Pramod).	If	we	want	to	ensure	consistency,	then	when	Martin	tries	to	book	his	room	on	the
London	node,	that	node	must	communicate	with	the	Mumbai	node	before	confirming	the	booking.
Essentially,	both	nodes	must	agree	on	the	serialization	of	their	requests.	This	gives	us	consistency—
but	should	the	network	link	break,	then	neither	system	can	book	any	hotel	room,	sacrificing
availability.
One	way	to	improve	availability	is	to	designate	one	node	as	the	master	for	a	particular	hotel	and

ensure	all	bookings	are	processed	by	that	master.	Should	that	master	be	Mumbai,	then	Mumbai	can
still	process	hotel	bookings	for	that	hotel	and	Pramod	will	get	the	last	room.	If	we	use	master-slave
replication,	London	users	can	see	the	inconsistent	room	information	but	cannot	make	a	booking	and
thus	cause	an	update	inconsistency.	However,	users	expect	that	it	could	happen	in	this	situation—so,
again,	the	compromise	works	for	this	particular	use	case.
This	improves	the	situation,	but	we	still	can’t	book	a	room	on	the	London	node	for	the	hotel	whose

master	is	in	Mumbai	if	the	connection	goes	down.	In	CAP	terminology,	this	is	a	failure	of	availability
in	that	Martin	can	talk	to	the	London	node	but	the	London	node	cannot	update	the	data.	To	gain	more
availability,	we	might	allow	both	systems	to	keep	accepting	hotel	reservations	even	if	the	network	link
breaks	down.	The	danger	here	is	that	Martin	and	Pramod	book	the	last	hotel	room.	However,
depending	on	how	this	hotel	operates,	that	may	be	fine.	Often,	travel	companies	tolerate	a	certain
amount	of	overbooking	in	order	to	cope	with	no-shows.	Conversely,	some	hotels	always	keep	a	few
rooms	clear	even	when	they	are	fully	booked,	in	order	to	be	able	to	swap	a	guest	out	of	a	room	with
problems	or	to	accommodate	a	high-status	late	booking.	Some	might	even	cancel	the	booking	with	an
apology	once	they	detected	the	conflict—reasoning	that	the	cost	of	that	is	less	than	the	cost	of	losing
bookings	on	network	failures.
The	classic	example	of	allowing	inconsistent	writes	is	the	shopping	cart,	as	discussed	in	Dynamo

[Amazon’s	Dynamo].	In	this	case	you	are	always	allowed	to	write	to	your	shopping	cart,	even	if
network	failures	mean	you	end	up	with	multiple	shopping	carts.	The	checkout	process	can	merge	the
two	shopping	carts	by	putting	the	union	of	the	items	from	the	carts	into	a	single	cart	and	returning
that.	Almost	always	that’s	the	correct	answer—but	if	not,	the	user	gets	the	opportunity	to	look	at	the
cart	before	completing	the	order.
The	lesson	here	is	that	although	most	software	developers	treat	update	consistency	as	The	Way

Things	Must	Be,	there	are	cases	where	you	can	deal	gracefully	with	inconsistent	answers	to	requests.
These	situations	are	closely	tied	to	the	domain	and	require	domain	knowledge	to	know	how	to
resolve.	Thus	you	can’t	usually	look	to	solve	them	purely	within	the	development	team—you	have	to
talk	to	domain	experts.	If	you	can	find	a	way	to	handle	inconsistent	updates,	this	gives	you	more
options	to	increase	availability	and	performance.	For	a	shopping	cart,	it	means	that	shoppers	can
always	shop,	and	do	so	quickly.	And	as	Patriotic	Americans,	we	know	how	vital	it	is	to	support	Our
Retail	Destiny.
A	similar	logic	applies	to	read	consistency.	If	you	are	trading	financial	instruments	over	a

computerized	exchange,	you	may	not	be	able	to	tolerate	any	data	that	isn’t	right	up	to	date.	However,
if	you	are	posting	a	news	item	to	a	media	website,	you	may	be	able	to	tolerate	old	pages	for	minutes.
In	these	cases	you	need	to	know	how	tolerant	you	are	of	stale	reads,	and	how	long	the	inconsistency

window	can	be—often	in	terms	of	the	average	length,	worst	case,	and	some	measure	of	the
distribution	for	the	lengths.	Different	data	items	may	have	different	tolerances	for	staleness,	and	thus
may	need	different	settings	in	your	replication	configuration.
Advocates	of	NoSQL	often	say	that	instead	of	following	the	ACID	properties	of	relational

transactions,	NoSQL	systems	follow	the	BASE	properties	(Basically	Available,	Soft	state,	Eventual
consistency)	[Brewer].	Although	we	feel	we	ought	to	mention	the	BASE	acronym	here,	we	don’t	think
it’s	very	useful.	The	acronym	is	even	more	contrived	than	ACID,	and	neither	“basically	available”	nor
“soft	state”	have	been	well	defined.	We	should	also	stress	that	when	Brewer	introduced	the	notion	of
BASE,	he	saw	the	tradeoff	between	ACID	and	BASE	as	a	spectrum,	not	a	binary	choice.
We’ve	included	this	discussion	of	the	CAP	theorem	because	it’s	often	used	(and	abused)	when

talking	about	the	tradeoffs	involving	consistency	in	distributed	databases.	However,	it’s	usually	better
to	think	not	about	the	tradeoff	between	consistency	and	availability	but	rather	between	consistency	and
latency.	We	can	summarize	much	of	the	discussion	about	consistency	in	distribution	by	saying	that	we
can	improve	consistency	by	getting	more	nodes	involved	in	the	interaction,	but	each	node	we	add
increases	the	response	time	of	that	interaction.	We	can	then	think	of	availability	as	the	limit	of	latency
that	we’re	prepared	to	tolerate;	once	latency	gets	too	high,	we	give	up	and	treat	the	data	as	unavailable
—which	neatly	fits	its	definition	in	the	context	of	CAP.

5.4.	Relaxing	Durability
So	far	we’ve	talked	about	consistency,	which	is	most	of	what	people	mean	when	they	talk	about	the
ACID	properties	of	database	transactions.	The	key	to	Consistency	is	serializing	requests	by	forming
Atomic,	Isolated	work	units.	But	most	people	would	scoff	at	relaxing	durability—after	all,	what	is	the
point	of	a	data	store	if	it	can	lose	updates?
As	it	turns	out,	there	are	cases	where	you	may	want	to	trade	off	some	durability	for	higher

performance.	If	a	database	can	run	mostly	in	memory,	apply	updates	to	its	in-memory	representation,
and	periodically	flush	changes	to	disk,	then	it	may	be	able	to	provide	substantially	higher
responsiveness	to	requests.	The	cost	is	that,	should	the	server	crash,	any	updates	since	the	last	flush
will	be	lost.
One	example	of	where	this	tradeoff	may	be	worthwhile	is	storing	user-session	state.	A	big	website

may	have	many	users	and	keep	temporary	information	about	what	each	user	is	doing	in	some	kind	of
session	state.	There’s	a	lot	of	activity	on	this	state,	creating	lots	of	demand,	which	affects	the
responsiveness	of	the	website.	The	vital	point	is	that	losing	the	session	data	isn’t	too	much	of	a
tragedy—it	will	create	some	annoyance,	but	maybe	less	than	a	slower	website	would	cause.	This
makes	it	a	good	candidate	for	nondurable	writes.	Often,	you	can	specify	the	durability	needs	on	a	call-
by-call	basis,	so	that	more	important	updates	can	force	a	flush	to	disk.
Another	example	of	relaxing	durability	is	capturing	telemetric	data	from	physical	devices.	It	may

be	that	you’d	rather	capture	data	at	a	faster	rate,	at	the	cost	of	missing	the	last	updates	should	the
server	go	down.
Another	class	of	durability	tradeoffs	comes	up	with	replicated	data.	A	failure	of	replication

durability	occurs	when	a	node	processes	an	update	but	fails	before	that	update	is	replicated	to	the
other	nodes.	A	simple	case	of	this	may	happen	if	you	have	a	master-slave	distribution	model	where
the	slaves	appoint	a	new	master	automatically	should	the	existing	master	fail.	If	a	master	does	fail,	any
writes	not	passed	onto	the	replicas	will	effectively	become	lost.	Should	the	master	come	back	online,
those	updates	will	conflict	with	updates	that	have	happened	since.	We	think	of	this	as	a	durability
problem	because	you	think	your	update	has	succeeded	since	the	master	acknowledged	it,	but	a	master
node	failure	caused	it	to	be	lost.
If	you’re	sufficiently	confident	in	bringing	the	master	back	online	rapidly,	this	is	a	reason	not	to

auto-failover	to	a	slave.	Otherwise,	you	can	improve	replication	durability	by	ensuring	that	the	master
waits	for	some	replicas	to	acknowledge	the	update	before	the	master	acknowledges	it	to	the	client.

Obviously,	however,	that	will	slow	down	updates	and	make	the	cluster	unavailable	if	slaves	fail—so,
again,	we	have	a	tradeoff,	depending	upon	how	vital	durability	is.	As	with	basic	durability,	it’s	useful
for	individual	calls	to	indicate	what	level	of	durability	they	need.

5.5.	Quorums
When	you’re	trading	off	consistency	or	durability,	it’s	not	an	all	or	nothing	proposition.	The	more
nodes	you	involve	in	a	request,	the	higher	is	the	chance	of	avoiding	an	inconsistency.	This	naturally
leads	to	the	question:	How	many	nodes	need	to	be	involved	to	get	strong	consistency?
Imagine	some	data	replicated	over	three	nodes.	You	don’t	need	all	nodes	to	acknowledge	a	write	to

ensure	strong	consistency;	all	you	need	is	two	of	them—a	majority.	If	you	have	conflicting	writes,
only	one	can	get	a	majority.	This	is	referred	to	as	a	write	quorum	and	expressed	in	a	slightly
pretentious	inequality	of	W	>	N/2,	meaning	the	number	of	nodes	participating	in	the	write	(W)	must	be
more	than	the	half	the	number	of	nodes	involved	in	replication	(N).	The	number	of	replicas	is	often
called	the	replication	factor.
Similarly	to	the	write	quorum,	there	is	the	notion	of	read	quorum:	How	many	nodes	you	need	to

contact	to	be	sure	you	have	the	most	up-to-date	change.	The	read	quorum	is	a	bit	more	complicated
because	it	depends	on	how	many	nodes	need	to	confirm	a	write.
Let’s	consider	a	replication	factor	of	3.	If	all	writes	need	two	nodes	to	confirm	(W	=	2)	then	we

need	to	contact	at	least	two	nodes	to	be	sure	we’ll	get	the	latest	data.	If,	however,	writes	are	only
confirmed	by	a	single	node	(W	=	1)	we	need	to	talk	to	all	three	nodes	to	be	sure	we	have	the	latest
updates.	In	this	case,	since	we	don’t	have	a	write	quorum,	we	may	have	an	update	conflict,	but	by
contacting	enough	readers	we	can	be	sure	to	detect	it.	Thus	we	can	get	strongly	consistent	reads	even
if	we	don’t	have	strong	consistency	on	our	writes.
This	relationship	between	the	number	of	nodes	you	need	to	contact	for	a	read	(R),	those	confirming

a	write	(W),	and	the	replication	factor	(N)	can	be	captured	in	an	inequality:	You	can	have	a	strongly
consistent	read	if	R	+	W	>	N.
These	inequalities	are	written	with	a	peer-to-peer	distribution	model	in	mind.	If	you	have	a	master-

slave	distribution,	you	only	have	to	write	to	the	master	to	avoid	write-write	conflicts,	and	similarly
only	read	from	the	master	to	avoid	read-write	conflicts.	With	this	notation,	it	is	common	to	confuse
the	number	of	nodes	in	the	cluster	with	the	replication	factor,	but	these	are	often	different.	I	may	have
100	nodes	in	my	cluster,	but	only	have	a	replication	factor	of	3,	with	most	of	the	distribution
occurring	due	to	sharding.
Indeed	most	authorities	suggest	that	a	replication	factor	of	3	is	enough	to	have	good	resilience.

This	allows	a	single	node	to	fail	while	still	maintaining	quora	for	reads	and	writes.	If	you	have
automatic	rebalancing,	it	won’t	take	too	long	for	the	cluster	to	create	a	third	replica,	so	the	chances	of
losing	a	second	replica	before	a	replacement	comes	up	are	slight.
The	number	of	nodes	participating	in	an	operation	can	vary	with	the	operation.	When	writing,	we

might	require	quorum	for	some	types	of	updates	but	not	others,	depending	on	how	much	we	value
consistency	and	availability.	Similarly,	a	read	that	needs	speed	but	can	tolerate	staleness	should
contact	less	nodes.
Often	you	may	need	to	take	both	into	account.	If	you	need	fast,	strongly	consistent	reads,	you	could

require	writes	to	be	acknowledged	by	all	the	nodes,	thus	allowing	reads	to	contact	only	one	(N	=	3,	W
=	3,	R	=	1).	That	would	mean	that	your	writes	are	slow,	since	they	have	to	contact	all	three	nodes,
and	you	would	not	be	able	to	tolerate	losing	a	node.	But	in	some	circumstances	that	may	be	the
tradeoff	to	make.

The	point	to	all	of	this	is	that	you	have	a	range	of	options	to	work	with	and	can	choose	which
combination	of	problems	and	advantages	to	prefer.	Some	writers	on	NoSQL	talk	about	a	simple
tradeoff	between	consistency	and	availability;	we	hope	you	now	realize	that	it’s	more	flexible—and
more	complicated—than	that.

5.6.	Further	Reading
There	are	all	sorts	of	interesting	blog	posts	and	papers	on	the	Internet	about	consistency	in	distributed
systems,	but	the	most	helpful	source	for	us	was	[Tanenbaum	and	Van	Steen].	It	does	an	excellent	job
of	organizing	much	of	the	fundamentals	of	distributed	systems	and	is	the	best	place	to	go	if	you’d	like
to	delve	deeper	than	we	have	in	this	chapter.
As	we	were	finishing	this	book,	IEEE	Computer	had	a	special	issue	[IEEE	Computer	Feb	2012]	on

the	growing	influence	of	the	CAP	theorem,	which	is	a	helpful	source	of	further	clarification	for	this
topic.

5.7.	Key	Points
•	Write-write	conflicts	occur	when	two	clients	try	to	write	the	same	data	at	the	same	time.	Read-
write	conflicts	occur	when	one	client	reads	inconsistent	data	in	the	middle	of	another	client’s
write.

•	Pessimistic	approaches	lock	data	records	to	prevent	conflicts.	Optimistic	approaches	detect
conflicts	and	fix	them.

•	Distributed	systems	see	read-write	conflicts	due	to	some	nodes	having	received	updates	while
other	nodes	have	not.	Eventual	consistency	means	that	at	some	point	the	system	will	become
consistent	once	all	the	writes	have	propagated	to	all	the	nodes.

•	Clients	usually	want	read-your-writes	consistency,	which	means	a	client	can	write	and	then
immediately	read	the	new	value.	This	can	be	difficult	if	the	read	and	the	write	happen	on
different	nodes.

•	To	get	good	consistency,	you	need	to	involve	many	nodes	in	data	operations,	but	this	increases
latency.	So	you	often	have	to	trade	off	consistency	versus	latency.

•	The	CAP	theorem	states	that	if	you	get	a	network	partition,	you	have	to	trade	off	availability	of
data	versus	consistency.

•	Durability	can	also	be	traded	off	against	latency,	particularly	if	you	want	to	survive	failures	with
replicated	data.

•	You	do	not	need	to	contact	all	replicants	to	preserve	strong	consistency	with	replication;	you
just	need	a	large	enough	quorum.

Chapter	6.	Version	Stamps

Many	critics	of	NoSQL	databases	focus	on	the	lack	of	support	for	transactions.	Transactions	are	a
useful	tool	that	helps	programmers	support	consistency.	One	reason	why	many	NoSQL	proponents
worry	less	about	a	lack	of	transactions	is	that	aggregate-oriented	NoSQL	databases	do	support	atomic
updates	within	an	aggregate—and	aggregates	are	designed	so	that	their	data	forms	a	natural	unit	of
update.	That	said,	it’s	true	that	transactional	needs	are	something	to	take	into	account	when	you	decide
what	database	to	use.
As	part	of	this,	it’s	important	to	remember	that	transactions	have	limitations.	Even	within	a

transactional	system	we	still	have	to	deal	with	updates	that	require	human	intervention	and	usually
cannot	be	run	within	transactions	because	they	would	involve	holding	a	transaction	open	for	too	long.
We	can	cope	with	these	using	version	stamps—which	turn	out	to	be	handy	in	other	situations	as	well,
particularly	as	we	move	away	from	the	single-server	distribution	model.

6.1.	Business	and	System	Transactions
The	need	to	support	update	consistency	without	transactions	is	actually	a	common	feature	of	systems
even	when	they	are	built	on	top	of	transactional	databases.	When	users	think	about	transactions,	they
usually	mean	business	transactions.	A	business	transaction	may	be	something	like	browsing	a
product	catalog,	choosing	a	bottle	of	Talisker	at	a	good	price,	filling	in	credit	card	information,	and
confirming	the	order.	Yet	all	of	this	usually	won’t	occur	within	the	system	transaction	provided	by
the	database	because	this	would	mean	locking	the	database	elements	while	the	user	is	trying	to	find
their	credit	card	and	gets	called	off	to	lunch	by	their	colleagues.
Usually	applications	only	begin	a	system	transaction	at	the	end	of	the	interaction	with	the	user,	so

that	the	locks	are	only	held	for	a	short	period	of	time.	The	problem,	however,	is	that	calculations	and
decisions	may	have	been	made	based	on	data	that’s	changed.	The	price	list	may	have	updated	the	price
of	the	Talisker,	or	someone	may	have	updated	the	customer ’s	address,	changing	the	shipping	charges.
The	broad	techniques	for	handling	this	are	offline	concurrency	[Fowler	PoEAA],	useful	in	NoSQL

situations	too.	A	particularly	useful	approach	is	the	Optimistic	Offline	Lock	[Fowler	PoEAA],	a	form
of	conditional	update	where	a	client	operation	rereads	any	information	that	the	business	transaction
relies	on	and	checks	that	it	hasn’t	changed	since	it	was	originally	read	and	displayed	to	the	user.	A
good	way	of	doing	this	is	to	ensure	that	records	in	the	database	contain	some	form	of	version	stamp:
a	field	that	changes	every	time	the	underlying	data	in	the	record	changes.	When	you	read	the	data	you
keep	a	note	of	the	version	stamp,	so	that	when	you	write	data	you	can	check	to	see	if	the	version	has
changed.
You	may	have	come	across	this	technique	with	updating	resources	with	HTTP	[HTTP].	One	way	of

doing	this	is	to	use	etags.	Whenever	you	get	a	resource,	the	server	responds	with	an	etag	in	the
header.	This	etag	is	an	opaque	string	that	indicates	the	version	of	the	resource.	If	you	then	update	that
resource,	you	can	use	a	conditional	update	by	supplying	the	etag	that	you	got	from	your	last	GET.	If
the	resource	has	changed	on	the	server,	the	etags	won’t	match	and	the	server	will	refuse	the	update,
returning	a	412	(Precondition	Failed)	response.
Some	databases	provide	a	similar	mechanism	of	conditional	update	that	allows	you	to	ensure

updates	won’t	be	based	on	stale	data.	You	can	do	this	check	yourself,	although	you	then	have	to	ensure
no	other	thread	can	run	against	the	resource	between	your	read	and	your	update.	(Sometimes	this	is
called	a	compare-and-set	(CAS)	operation,	whose	name	comes	from	the	CAS	operations	done	in

processors.	The	difference	is	that	a	processor	CAS	compares	a	value	before	setting	it,	while	a
database	conditional	update	compares	a	version	stamp	of	the	value.)
There	are	various	ways	you	can	construct	your	version	stamps.	You	can	use	a	counter,	always

incrementing	it	when	you	update	the	resource.	Counters	are	useful	since	they	make	it	easy	to	tell	if
one	version	is	more	recent	than	another.	On	the	other	hand,	they	require	the	server	to	generate	the
counter	value,	and	also	need	a	single	master	to	ensure	the	counters	aren’t	duplicated.
Another	approach	is	to	create	a	GUID,	a	large	random	number	that’s	guaranteed	to	be	unique.

These	use	some	combination	of	dates,	hardware	information,	and	whatever	other	sources	of
randomness	they	can	pick	up.	The	nice	thing	about	GUIDs	is	that	they	can	be	generated	by	anyone	and
you’ll	never	get	a	duplicate;	a	disadvantage	is	that	they	are	large	and	can’t	be	compared	directly	for
recentness.
A	third	approach	is	to	make	a	hash	of	the	contents	of	the	resource.	With	a	big	enough	hash	key	size,

a	content	hash	can	be	globally	unique	like	a	GUID	and	can	also	be	generated	by	anyone;	the	advantage
is	that	they	are	deterministic—any	node	will	generate	the	same	content	hash	for	same	resource	data.
However,	like	GUIDs	they	can’t	be	directly	compared	for	recentness,	and	they	can	be	lengthy.
A	fourth	approach	is	to	use	the	timestamp	of	the	last	update.	Like	counters,	they	are	reasonably

short	and	can	be	directly	compared	for	recentness,	yet	have	the	advantage	of	not	needing	a	single
master.	Multiple	machines	can	generate	timestamps—but	to	work	properly,	their	clocks	have	to	be
kept	in	sync.	One	node	with	a	bad	clock	can	cause	all	sorts	of	data	corruptions.	There’s	also	a	danger
that	if	the	timestamp	is	too	granular	you	can	get	duplicates—it’s	no	good	using	timestamps	of	a
millisecond	precision	if	you	get	many	updates	per	millisecond.
You	can	blend	the	advantages	of	these	different	version	stamp	schemes	by	using	more	than	one	of

them	to	create	a	composite	stamp.	For	example,	CouchDB	uses	a	combination	of	counter	and	content
hash.	Most	of	the	time	this	allows	version	stamps	to	be	compared	for	recentness,	even	when	you	use
peer-to-peer	replication.	Should	two	peers	update	at	the	same	time,	the	combination	of	the	same	count
and	different	content	hashes	makes	it	easy	to	spot	the	conflict.
As	well	as	helping	to	avoid	update	conflicts,	version	stamps	are	also	useful	for	providing	session

consistency	(p.	52).

6.2.	Version	Stamps	on	Multiple	Nodes
The	basic	version	stamp	works	well	when	you	have	a	single	authoritative	source	for	data,	such	as	a
single	server	or	master-slave	replication.	In	that	case	the	version	stamp	is	controlled	by	the	master.
Any	slaves	follow	the	master ’s	stamps.	But	this	system	has	to	be	enhanced	in	a	peer-to-peer
distribution	model	because	there’s	no	longer	a	single	place	to	set	the	version	stamps.
If	you’re	asking	two	nodes	for	some	data,	you	run	into	the	chance	that	they	may	give	you	different

answers.	If	this	happens,	your	reaction	may	vary	depending	on	the	cause	of	that	difference.	It	may	be
that	an	update	has	only	reached	one	node	but	not	the	other,	in	which	case	you	can	accept	the	latest
(assuming	you	can	tell	which	one	that	is).	Alternatively,	you	may	have	run	into	an	inconsistent	update,
in	which	case	you	need	to	decide	how	to	deal	with	that.	In	this	situation,	a	simple	GUID	or	etag	won’t
suffice,	since	these	don’t	tell	you	enough	about	the	relationships.
The	simplest	form	of	version	stamp	is	a	counter.	Each	time	a	node	updates	the	data,	it	increments

the	counter	and	puts	the	value	of	the	counter	into	the	version	stamp.	If	you	have	blue	and	green	slave
replicas	of	a	single	master,	and	the	blue	node	answers	with	a	version	stamp	of	4	and	the	green	node
with	6,	you	know	that	the	green’s	answer	is	more	recent.
In	multiple-master	cases,	we	need	something	fancier.	One	approach,	used	by	distributed	version

control	systems,	is	to	ensure	that	all	nodes	contain	a	history	of	version	stamps.	That	way	you	can	see
if	the	blue	node’s	answer	is	an	ancestor	of	the	green’s	answer.	This	would	either	require	the	clients	to
hold	onto	version	stamp	histories,	or	the	server	nodes	to	keep	version	stamp	histories	and	include
them	when	asked	for	data.	This	also	detects	an	inconsistency,	which	we	would	see	if	we	get	two
version	stamps	and	neither	of	them	has	the	other	in	their	histories.	Although	version	control	systems
keep	these	kinds	of	histories,	they	aren’t	found	in	NoSQL	databases.
A	simple	but	problematic	approach	is	to	use	timestamps.	The	main	problem	here	is	that	it’s	usually

difficult	to	ensure	that	all	the	nodes	have	a	consistent	notion	of	time,	particularly	if	updates	can
happen	rapidly.	Should	a	node’s	clock	get	out	of	sync,	it	can	cause	all	sorts	of	trouble.	In	addition,
you	can’t	detect	write-write	conflicts	with	timestamps,	so	it	would	only	work	well	for	the	single-
master	case—and	then	a	counter	is	usually	better.
The	most	common	approach	used	by	peer-to-peer	NoSQL	systems	is	a	special	form	of	version

stamp	which	we	call	a	vector	stamp.	In	essence,	a	vector	stamp	is	a	set	of	counters,	one	for	each
node.	A	vector	stamp	for	three	nodes	(blue,	green,	black)	would	look	something	like	[blue:	43,
green:	54,	black:	12].	Each	time	a	node	has	an	internal	update,	it	updates	its	own	counter,	so	an
update	in	the	green	node	would	change	the	vector	to	[blue:	43,	green:	55,	black:	12].	Whenever
two	nodes	communicate,	they	synchronize	their	vector	stamps.	There	are	several	variations	of	exactly
how	this	synchronization	is	done.	We’re	coining	the	term	“vector	stamp”	as	a	general	term	in	this
book;	you’ll	also	come	across	vector	clocks	and	version	vectors—these	are	specific	forms	of	vector
stamps	that	differ	in	how	they	synchronize.
By	using	this	scheme	you	can	tell	if	one	version	stamp	is	newer	than	another	because	the	newer

stamp	will	have	all	its	counters	greater	than	or	equal	to	those	in	the	older	stamp.	So	[blue:	1,
green:	2,	black:	5]	is	newer	than	[blue:1,	green:	1,	black	5]	since	one	of	its	counters	is
greater.	If	both	stamps	have	a	counter	greater	than	the	other,	e.g.	[blue:	1,	green:	2,	black:	5]
and	[blue:	2,	green:	1,	black:	5],	then	you	have	a	write-write	conflict.
There	may	be	missing	values	in	the	vector,	in	which	case	we	use	treat	the	missing	value	as	0.	So

[blue:	6,	black:	2]	would	be	treated	as	[blue:	6,	green:	0,	black:	2].	This	allows	you	to
easily	add	new	nodes	without	invalidating	the	existing	vector	stamps.
Vector	stamps	are	a	valuable	tool	that	spots	inconsistencies,	but	doesn’t	resolve	them.	Any	conflict

resolution	will	depend	on	the	domain	you	are	working	in.	This	is	part	of	the	consistency/latency
tradeoff.	You	either	have	to	live	with	the	fact	that	network	partitions	may	make	your	system
unavailable,	or	you	have	to	detect	and	deal	with	inconsistencies.

6.3.	Key	Points
•	Version	stamps	help	you	detect	concurrency	conflicts.	When	you	read	data,	then	update	it,	you
can	check	the	version	stamp	to	ensure	nobody	updated	the	data	between	your	read	and	write.

•	Version	stamps	can	be	implemented	using	counters,	GUIDs,	content	hashes,	timestamps,	or	a
combination	of	these.

•	With	distributed	systems,	a	vector	of	version	stamps	allows	you	to	detect	when	different	nodes
have	conflicting	updates.

Chapter	7.	Map-Reduce

The	rise	of	aggregate-oriented	databases	is	in	large	part	due	to	the	growth	of	clusters.	Running	on	a
cluster	means	you	have	to	make	your	tradeoffs	in	data	storage	differently	than	when	running	on	a
single	machine.	Clusters	don’t	just	change	the	rules	for	data	storage—they	also	change	the	rules	for
computation.	If	you	store	lots	of	data	on	a	cluster,	processing	that	data	efficiently	means	you	have	to
think	differently	about	how	you	organize	your	processing.
With	a	centralized	database,	there	are	generally	two	ways	you	can	run	the	processing	logic	against

it:	either	on	the	database	server	itself	or	on	a	client	machine.	Running	it	on	a	client	machine	gives	you
more	flexibility	in	choosing	a	programming	environment,	which	usually	makes	for	programs	that
are	easier	to	create	or	extend.	This	comes	at	the	cost	of	having	to	shlep	lots	of	data	from	the	database
server.	If	you	need	to	hit	a	lot	of	data,	then	it	makes	sense	to	do	the	processing	on	the	server,	paying
the	price	in	programming	convenience	and	increasing	the	load	on	the	database	server.
When	you	have	a	cluster,	there	is	good	news	immediately—you	have	lots	of	machines	to	spread	the

computation	over.	However,	you	also	still	need	to	try	to	reduce	the	amount	of	data	that	needs	to	be
transferred	across	the	network	by	doing	as	much	processing	as	you	can	on	the	same	node	as	the	data
it	needs.
The	map-reduce	pattern	(a	form	of	Scatter-Gather	[Hohpe	and	Woolf])	is	a	way	to	organize

processing	in	such	a	way	as	to	take	advantage	of	multiple	machines	on	a	cluster	while	keeping	as
much	processing	and	the	data	it	needs	together	on	the	same	machine.	It	first	gained	prominence	with
Google’s	MapReduce	framework	[Dean	and	Ghemawat].	A	widely	used	open-source	implementation
is	part	of	the	Hadoop	project,	although	several	databases	include	their	own	implementations.	As	with
most	patterns,	there	are	differences	in	detail	between	these	implementations,	so	we’ll	concentrate	on
the	general	concept.	The	name	“map-reduce”	reveals	its	inspiration	from	the	map	and	reduce
operations	on	collections	in	functional	programming	languages.

7.1.	Basic	Map-Reduce
To	explain	the	basic	idea,	we’ll	start	from	an	example	we’ve	already	flogged	to	death—that	of
customers	and	orders.	Let’s	assume	we	have	chosen	orders	as	our	aggregate,	with	each	order	having
line	items.	Each	line	item	has	a	product	ID,	quantity,	and	the	price	charged.	This	aggregate	makes	a	lot
of	sense	as	usually	people	want	to	see	the	whole	order	in	one	access.	We	have	lots	of	orders,	so	we’ve
sharded	the	dataset	over	many	machines.
However,	sales	analysis	people	want	to	see	a	product	and	its	total	revenue	for	the	last	seven	days.

This	report	doesn’t	fit	the	aggregate	structure	that	we	have—which	is	the	downside	of	using
aggregates.	In	order	to	get	the	product	revenue	report,	you’ll	have	to	visit	every	machine	in	the
cluster	and	examine	many	records	on	each	machine.
This	is	exactly	the	kind	of	situation	that	calls	for	map-reduce.	The	first	stage	in	a	map-reduce	job	is

the	map.	A	map	is	a	function	whose	input	is	a	single	aggregate	and	whose	output	is	a	bunch	of	key-
value	pairs.	In	this	case,	the	input	would	be	an	order.	The	output	would	be	key-value	pairs
corresponding	to	the	line	items.	Each	one	would	have	the	product	ID	as	the	key	and	an	embedded	map
with	the	quantity	and	price	as	the	values	(see	Figure	7.1).

Figure	7.1.	A	map	function	reads	records	from	the	database	and	emits	key-value	pairs.
Each	application	of	the	map	function	is	independent	of	all	the	others.	This	allows	them	to	be	safely

parallelizable,	so	that	a	map-reduce	framework	can	create	efficient	map	tasks	on	each	node	and	freely
allocate	each	order	to	a	map	task.	This	yields	a	great	deal	of	parallelism	and	locality	of	data	access.
For	this	example,	we	are	just	selecting	a	value	out	of	the	record,	but	there’s	no	reason	why	we	can’t
carry	out	some	arbitrarily	complex	function	as	part	of	the	map—providing	it	only	depends	on	one
aggregate’s	worth	of	data.
A	map	operation	only	operates	on	a	single	record;	the	reduce	function	takes	multiple	map	outputs

with	the	same	key	and	combines	their	values.	So,	a	map	function	might	yield	1000	line	items	from
orders	for	“Database	Refactoring”;	the	reduce	function	would	reduce	down	to	one,	with	the	totals	for
the	quantity	and	revenue.	While	the	map	function	is	limited	to	working	only	on	data	from	a	single
aggregate,	the	reduce	function	can	use	all	values	emitted	for	a	single	key	(see	Figure	7.2).

Figure	7.2.	A	reduce	function	takes	several	key-value	pairs	with	the	same	key	and	aggregates
them	into	one.

The	map-reduce	framework	arranges	for	map	tasks	to	be	run	on	the	correct	nodes	to	process	all
the	documents	and	for	data	to	be	moved	to	the	reduce	function.	To	make	it	easier	to	write	the	reduce
function,	the	framework	collects	all	the	values	for	a	single	pair	and	calls	the	reduce	function	once
with	the	key	and	the	collection	of	all	the	values	for	that	key.	So	to	run	a	map-reduce	job,	you	just	need
to	write	these	two	functions.

7.2.	Partitioning	and	Combining
In	the	simplest	form,	we	think	of	a	map-reduce	job	as	having	a	single	reduce	function.	The	outputs
from	all	the	map	tasks	running	on	the	various	nodes	are	concatenated	together	and	sent	into	the
reduce.	While	this	will	work,	there	are	things	we	can	do	to	increase	the	parallelism	and	to	reduce	the
data	transfer	(see	Figure	7.3).

Figure	7.3.	Partitioning	allows	reduce	functions	to	run	in	parallel	on	different	keys.
The	first	thing	we	can	do	is	increase	parallelism	by	partitioning	the	output	of	the	mappers.	Each

reduce	function	operates	on	the	results	of	a	single	key.	This	is	a	limitation—it	means	you	can’t	do
anything	in	the	reduce	that	operates	across	keys—but	it’s	also	a	benefit	in	that	it	allows	you	to	run
multiple	reducers	in	parallel.	To	take	advantage	of	this,	the	results	of	the	mapper	are	divided	up	based
the	key	on	each	processing	node.	Typically,	multiple	keys	are	grouped	together	into	partitions.	The
framework	then	takes	the	data	from	all	the	nodes	for	one	partition,	combines	it	into	a	single	group
for	that	partition,	and	sends	it	off	to	a	reducer.	Multiple	reducers	can	then	operate	on	the	partitions	in
parallel,	with	the	final	results	merged	together.	(This	step	is	also	called	“shuffling,”	and	the	partitions
are	sometimes	referred	to	as	“buckets”	or	“regions.”)
The	next	problem	we	can	deal	with	is	the	amount	of	data	being	moved	from	node	to	node	between

the	map	and	reduce	stages.	Much	of	this	data	is	repetitive,	consisting	of	multiple	key-value	pairs	for
the	same	key.	A	combiner	function	cuts	this	data	down	by	combining	all	the	data	for	the	same	key	into
a	single	value	(see	Figure	7.4).	A	combiner	function	is,	in	essence,	a	reducer	function—indeed,	in
many	cases	the	same	function	can	be	used	for	combining	as	the	final	reduction.	The	reduce	function
needs	a	special	shape	for	this	to	work:	Its	output	must	match	its	input.	We	call	such	a	function	a
combinable	reducer.

Figure	7.4.	Combining	reduces	data	before	sending	it	across	the	network.
Not	all	reduce	functions	are	combinable.	Consider	a	function	that	counts	the	number	of	unique

customers	for	a	particular	product.	The	map	function	for	such	an	operation	would	need	to	emit	the
product	and	the	customer.	The	reducer	can	then	combine	them	and	count	how	many	times	each
customer	appears	for	a	particular	product,	emitting	the	product	and	the	count	(see	Figure	7.5).	But	this
reducer ’s	output	is	different	from	its	input,	so	it	can’t	be	used	as	a	combiner.	You	can	still	run	a
combining	function	here:	one	that	just	eliminates	duplicate	product-customer	pairs,	but	it	will	be
different	from	the	final	reducer.

Figure	7.5.	This	reduce	function,	which	counts	how	many	unique	customers	order	a	particular
tea,	is	not	combinable.

When	you	have	combining	reducers,	the	map-reduce	framework	can	safely	run	not	only	in	parallel
(to	reduce	different	partitions),	but	also	in	series	to	reduce	the	same	partition	at	different	times	and
places.	In	addition	to	allowing	combining	to	occur	on	a	node	before	data	transmission,	you	can	also
start	combining	before	mappers	have	finished.	This	provides	a	good	bit	of	extra	flexibility	to	the
map-reduce	processing.	Some	map-reduce	frameworks	require	all	reducers	to	be	combining
reducers,	which	maximizes	this	flexibility.	If	you	need	to	do	a	noncombining	reducer	with	one	of
these	frameworks,	you’ll	need	to	separate	the	processing	into	pipelined	map-reduce	steps.

7.3.	Composing	Map-Reduce	Calculations
The	map-reduce	approach	is	a	way	of	thinking	about	concurrent	processing	that	trades	off	flexibility
in	how	you	structure	your	computation	for	a	relatively	straightforward	model	for	parallelizing	the
computation	over	a	cluster.	Since	it’s	a	tradeoff,	there	are	constraints	on	what	you	can	do	in	your

calculations.	Within	a	map	task,	you	can	only	operate	on	a	single	aggregate.	Within	a	reduce	task,	you
can	only	operate	on	a	single	key.	This	means	you	have	to	think	differently	about	structuring	your
programs	so	they	work	well	within	these	constraints.
One	simple	limitation	is	that	you	have	to	structure	your	calculations	around	operations	that	fit	in

well	with	the	notion	of	a	reduce	operation.	A	good	example	of	this	is	calculating	averages.	Let’s
consider	the	kind	of	orders	we’ve	been	looking	at	so	far;	suppose	we	want	to	know	the	average
ordered	quantity	of	each	product.	An	important	property	of	averages	is	that	they	are	not	composable
—that	is,	if	I	take	two	groups	of	orders,	I	can’t	combine	their	averages	alone.	Instead,	I	need	to	take
total	amount	and	the	count	of	orders	from	each	group,	combine	those,	and	then	calculate	the	average
from	the	combined	sum	and	count	(see	Figure	7.6).

Figure	7.6.	When	calculating	averages,	the	sum	and	count	can	be	combined	in	the	reduce
calculation,	but	the	average	must	be	calculated	from	the	combined	sum	and	count.

This	notion	of	looking	for	calculations	that	reduce	neatly	also	affects	how	we	do	counts.	To	make	a
count,	the	mapping	function	will	emit	count	fields	with	a	value	of	1,	which	can	be	summed	to	get	a
total	count	(see	Figure	7.7).

Figure	7.7.	When	making	a	count,	each	map	emits	1,	which	can	be	summed	to	get	a	total.

7.3.1.	A	Two	Stage	Map-Reduce	Example
As	map-reduce	calculations	get	more	complex,	it’s	useful	to	break	them	down	into	stages	using	a

pipes-and-filters	approach,	with	the	output	of	one	stage	serving	as	input	to	the	next,	rather	like	the
pipelines	in	UNIX.
Consider	an	example	where	we	want	to	compare	the	sales	of	products	for	each	month	in	2011	to	the

prior	year.	To	do	this,	we’ll	break	the	calculations	down	into	two	stages.	The	first	stage	will	produce
records	showing	the	aggregate	figures	for	a	single	product	in	a	single	month	of	the	year.	The	second
stage	then	uses	these	as	inputs	and	produces	the	result	for	a	single	product	by	comparing	one	month’s
results	with	the	same	month	in	the	prior	year	(see	Figure	7.8).

Figure	7.8.	A	calculation	broken	down	into	two	map-reduce	steps,	which	will	be	expanded	in	the
next	three	figures

A	first	stage	(Figure	7.9)	would	read	the	original	order	records	and	output	a	series	of	key-value
pairs	for	the	sales	of	each	product	per	month.

Figure	7.9.	Creating	records	for	monthly	sales	of	a	product
This	stage	is	similar	to	the	map-reduce	examples	we’ve	seen	so	far.	The	only	new	feature	is	using	a

composite	key	so	that	we	can	reduce	records	based	on	the	values	of	multiple	fields.
The	second-stage	mappers	(Figure	7.10)	process	this	output	depending	on	the	year.	A	2011	record

populates	the	current	year	quantity	while	a	2010	record	populates	a	prior	year	quantity.	Records	for
earlier	years	(such	as	2009)	don’t	result	in	any	mapping	output	being	emitted.

Figure	7.10.	The	second	stage	mapper	creates	base	records	for	year-on-year	comparisons.
The	reduce	in	this	case	(Figure	7.11)	is	a	merge	of	records,	where	combining	the	values	by

summing	allows	two	different	year	outputs	to	be	reduced	to	a	single	value	(with	a	calculation	based
on	the	reduced	values	thrown	in	for	good	measure).

Figure	7.11.	The	reduction	step	is	a	merge	of	incomplete	records.
Decomposing	this	report	into	multiple	map-reduce	steps	makes	it	easier	to	write.	Like	many

transformation	examples,	once	you’ve	found	a	transformation	framework	that	makes	it	easy	to
compose	steps,	it’s	usually	easier	to	compose	many	small	steps	together	than	try	to	cram	heaps	of
logic	into	a	single	step.
Another	advantage	is	that	the	intermediate	output	may	be	useful	for	different	outputs	too,	so	you

can	get	some	reuse.	This	reuse	is	important	as	it	saves	time	both	in	programming	and	in	execution.
The	intermediate	records	can	be	saved	in	the	data	store,	forming	a	materialized	view	(“Materialized
Views,”	p.	30).	Early	stages	of	map-reduce	operations	are	particularly	valuable	to	save	since	they
often	represent	the	heaviest	amount	of	data	access,	so	building	them	once	as	a	basis	for	many
downstream	uses	saves	a	lot	of	work.	As	with	any	reuse	activity,	however,	it’s	important	to	build	them
out	of	experience	with	real	queries,	as	speculative	reuse	rarely	fulfills	its	promise.	So	it’s	important
to	look	at	the	forms	of	various	queries	as	they	are	built	and	factor	out	the	common	parts	of	the
calculations	into	materialized	views.
Map-reduce	is	a	pattern	that	can	be	implemented	in	any	programming	language.	However,	the

constraints	of	the	style	make	it	a	good	fit	for	languages	specifically	designed	for	map-reduce
computations.	Apache	Pig	[Pig],	an	offshoot	of	the	Hadoop	[Hadoop]	project,	is	a	language
specifically	built	to	make	it	easy	to	write	map-reduce	programs.	It	certainly	makes	it	much	easier	to
work	with	Hadoop	than	the	underlying	Java	libraries.	In	a	similar	vein,	if	you	want	to	specify	map-
reduce	programs	using	an	SQL-like	syntax,	there	is	hive	[Hive],	another	Hadoop	offshoot.
The	map-reduce	pattern	is	important	to	know	about	even	outside	of	the	context	of	NoSQL

databases.	Google’s	original	map-reduce	system	operated	on	files	stored	on	a	distributed	file	system
—an	approach	that’s	used	by	the	open-source	Hadoop	project.	While	it	takes	some	thought	to	get	used
to	the	constraints	of	structuring	computations	in	map-reduce	steps,	the	result	is	a	calculation	that	is
inherently	well-suited	to	running	on	a	cluster.	When	dealing	with	high	volumes	of	data,	you	need	to
take	a	cluster-oriented	approach.	Aggregate-oriented	databases	fit	well	with	this	style	of	calculation.
We	think	that	in	the	next	few	years	many	more	organizations	will	be	processing	the	volumes	of	data

that	demand	a	cluster-oriented	solution—and	the	map-reduce	pattern	will	see	more	and	more	use.

7.3.2.	Incremental	Map-Reduce
The	examples	we’ve	discussed	so	far	are	complete	map-reduce	computations,	where	we	start	with
raw	inputs	and	create	a	final	output.	Many	map-reduce	computations	take	a	while	to	perform,	even
with	clustered	hardware,	and	new	data	keeps	coming	in	which	means	we	need	to	rerun	the
computation	to	keep	the	output	up	to	date.	Starting	from	scratch	each	time	can	take	too	long,	so	often
it’s	useful	to	structure	a	map-reduce	computation	to	allow	incremental	updates,	so	that	only	the
minimum	computation	needs	to	be	done.
The	map	stages	of	a	map-reduce	are	easy	to	handle	incrementally—only	if	the	input	data	changes

does	the	mapper	need	to	be	rerun.	Since	maps	are	isolated	from	each	other,	incremental	updates	are
straightforward.
The	more	complex	case	is	the	reduce	step,	since	it	pulls	together	the	outputs	from	many	maps	and

any	change	in	the	map	outputs	could	trigger	a	new	reduction.	This	recomputation	can	be	lessened
depending	on	how	parallel	the	reduce	step	is.	If	we	are	partitioning	the	data	for	reduction,	then	any
partition	that’s	unchanged	does	not	need	to	be	re-reduced.	Similarly,	if	there’s	a	combiner	step,	it
doesn’t	need	to	be	rerun	if	its	source	data	hasn’t	changed.
If	our	reducer	is	combinable,	there’s	some	more	opportunities	for	computation	avoidance.	If	the

changes	are	additive—that	is,	if	we	are	only	adding	new	records	but	are	not	changing	or	deleting	any
old	records—then	we	can	just	run	the	reduce	with	the	existing	result	and	the	new	additions.	If	there	are
destructive	changes,	that	is	updates	and	deletes,	then	we	can	avoid	some	recomputation	by	breaking	up
the	reduce	operation	into	steps	and	only	recalculating	those	steps	whose	inputs	have	changed—
essentially,	using	a	Dependency	Network	[Fowler	DSL]	to	organize	the	computation.
The	map-reduce	framework	controls	much	of	this,	so	you	have	to	understand	how	a	specific

framework	supports	incremental	operation.

7.4.	Further	Reading
If	you’re	going	to	use	map-reduce	calculations,	your	first	port	of	call	will	be	the	documentation	for
the	particular	database	you	are	using.	Each	database	has	its	own	approach,	vocabulary,	and	quirks,	and
that’s	what	you’ll	need	to	be	familiar	with.	Beyond	that,	there	is	a	need	to	capture	more	general
information	on	how	to	structure	map-reduce	jobs	to	maximize	maintainability	and	performance.	We
don’t	have	any	specific	books	to	point	to	yet,	but	we	suspect	that	a	good	though	easily	overlooked
source	are	books	on	Hadoop.	Although	Hadoop	is	not	a	database,	it’s	a	tool	that	uses	map-reduce
heavily,	so	writing	an	effective	map-reduce	task	with	Hadoop	is	likely	to	be	useful	in	other	contexts
(subject	to	the	changes	in	detail	between	Hadoop	and	whatever	systems	you’re	using).

7.5.	Key	Points
•	Map-reduce	is	a	pattern	to	allow	computations	to	be	parallelized	over	a	cluster.
•	The	map	task	reads	data	from	an	aggregate	and	boils	it	down	to	relevant	key-value	pairs.	Maps
only	read	a	single	record	at	a	time	and	can	thus	be	parallelized	and	run	on	the	node	that	stores
the	record.

•	Reduce	tasks	take	many	values	for	a	single	key	output	from	map	tasks	and	summarize	them	into
a	single	output.	Each	reducer	operates	on	the	result	of	a	single	key,	so	it	can	be	parallelized	by
key.

•	Reducers	that	have	the	same	form	for	input	and	output	can	be	combined	into	pipelines.	This

improves	parallelism	and	reduces	the	amount	of	data	to	be	transferred.
•	Map-reduce	operations	can	be	composed	into	pipelines	where	the	output	of	one	reduce	is	the
input	to	another	operation’s	map.

•	If	the	result	of	a	map-reduce	computation	is	widely	used,	it	can	be	stored	as	a	materialized	view.
•	Materialized	views	can	be	updated	through	incremental	map-reduce	operations	that	only
compute	changes	to	the	view	instead	of	recomputing	everything	from	scratch.

Part	II:	Implement

Chapter	8.	Key-Value	Databases

A	key-value	store	is	a	simple	hash	table,	primarily	used	when	all	access	to	the	database	is	via	primary
key.	Think	of	a	table	in	a	traditional	RDBMS	with	two	columns,	such	as	ID	and	NAME,	the	ID	column
being	the	key	and	NAME	column	storing	the	value.	In	an	RDBMS,	the	NAME	column	is	restricted	to
storing	data	of	type	String.	The	application	can	provide	an	ID	and	VALUE	and	persist	the	pair;	if	the	ID
already	exists	the	current	value	is	overwritten,	otherwise	a	new	entry	is	created.	Let’s	look	at	how
terminology	compares	in	Oracle	and	Riak.

8.1.	What	Is	a	Key-Value	Store
Key-value	stores	are	the	simplest	NoSQL	data	stores	to	use	from	an	API	perspective.	The	client	can
either	get	the	value	for	the	key,	put	a	value	for	a	key,	or	delete	a	key	from	the	data	store.	The	value	is
a	blob	that	the	data	store	just	stores,	without	caring	or	knowing	what’s	inside;	it’s	the	responsibility	of
the	application	to	understand	what	was	stored.	Since	key-value	stores	always	use	primary-key	access,
they	generally	have	great	performance	and	can	be	easily	scaled.
Some	of	the	popular	key-value	databases	are	Riak	[Riak],	Redis	(often	referred	to	as	Data	Structure

server)	[Redis],	Memcached	DB	and	its	flavors	[Memcached],	Berkeley	DB	[Berkeley	DB],
HamsterDB	(especially	suited	for	embedded	use)	[HamsterDB],	Amazon	DynamoDB	[Amazon’s
Dynamo]	(not	open-source),	and	Project	Voldemort	[Project	Voldemort]	(an	open-source
implementation	of	Amazon	DynamoDB).
In	some	key-value	stores,	such	as	Redis,	the	aggregate	being	stored	does	not	have	to	be	a	domain

object—it	could	be	any	data	structure.	Redis	supports	storing	lists,	sets,	hashes	and	can	do	range,
diff,	union,	and	intersection	operations.	These	features	allow	Redis	to	be	used	in	more	different	ways
than	a	standard	key-value	store.
There	are	many	more	key-value	databases	and	many	new	ones	are	being	worked	on	at	this	time.

For	the	sake	of	keeping	discussions	in	this	book	easier	we	will	focus	mostly	on	Riak.	Riak	lets	us
store	keys	into	buckets,	which	are	just	a	way	to	segment	the	keys—think	of	buckets	as	flat	namespaces
for	the	keys.
If	we	wanted	to	store	user	session	data,	shopping	cart	information,	and	user	preferences	in	Riak,	we

could	just	store	all	of	them	in	the	same	bucket	with	a	single	key	and	single	value	for	all	of	these
objects.	In	this	scenario,	we	would	have	a	single	object	that	stores	all	the	data	and	is	put	into	a	single
bucket	(Figure	8.1).

Figure	8.1.	Storing	all	the	data	in	a	single	bucket
The	downside	of	storing	all	the	different	objects	(aggregates)	in	the	single	bucket	would	be	that

one	bucket	would	store	different	types	of	aggregates,	increasing	the	chance	of	key	conflicts.	An
alternate	approach	would	be	to	append	the	name	of	the	object	to	the	key,	such	as
288790b8a421_userProfile,	so	that	we	can	get	to	individual	objects	as	they	are	needed	(Figure	8.2).

Figure	8.2.	Change	the	key	design	to	segment	the	data	in	a	single	bucket.
We	could	also	create	buckets	which	store	specific	data.	In	Riak,	they	are	known	as	domain	buckets

allowing	the	serialization	and	deserialization	to	be	handled	by	the	client	driver.
Click	here	to	view	code	image

Bucket	bucket	=	client.fetchBucket(bucketName).execute();
DomainBucket<UserProfile>	profileBucket	=
DomainBucket.builder(bucket,	UserProfile.class).build();

Using	domain	buckets	or	different	buckets	for	different	objects	(such	as	UserProfile	and
ShoppingCart)	segments	the	data	across	different	buckets	allowing	you	to	read	only	the	object	you
need	without	having	to	change	key	design.
Key-value	stores	such	as	Redis	also	support	storing	random	data	structures,	which	can	be	sets,

hashes,	strings,	and	so	on.	This	feature	can	be	used	to	store	lists	of	things,	like	states	or
addressTypes,	or	an	array	of	user ’s	visits.

8.2.	Key-Value	Store	Features

While	using	any	NoSQL	data	stores,	there	is	an	inevitable	need	to	understand	how	the	features
compare	to	the	standard	RDBMS	data	stores	that	we	are	so	used	to.	The	primary	reason	is	to
understand	what	features	are	missing	and	how	does	the	application	architecture	need	to	change	to
better	use	the	features	of	a	key-value	data	store.	Some	of	the	features	we	will	discuss	for	all	the
NoSQL	data	stores	are	consistency,	transactions,	query	features,	structure	of	the	data,	and	scaling.

8.2.1.	Consistency
Consistency	is	applicable	only	for	operations	on	a	single	key,	since	these	operations	are	either	a	get,
put,	or	delete	on	a	single	key.	Optimistic	writes	can	be	performed,	but	are	very	expensive	to
implement,	because	a	change	in	value	cannot	be	determined	by	the	data	store.
In	distributed	key-value	store	implementations	like	Riak,	the	eventually	consistent	(p.	50)	model	of

consistency	is	implemented.	Since	the	value	may	have	already	been	replicated	to	other	nodes,	Riak
has	two	ways	of	resolving	update	conflicts:	either	the	newest	write	wins	and	older	writes	loose,	or
both	(all)	values	are	returned	allowing	the	client	to	resolve	the	conflict.
In	Riak,	these	options	can	be	set	up	during	the	bucket	creation.	Buckets	are	just	a	way	to	namespace

keys	so	that	key	collisions	can	be	reduced—for	example,	all	customer	keys	may	reside	in	the
customer	bucket.	When	creating	a	bucket,	default	values	for	consistency	can	be	provided,	for	example
that	a	write	is	considered	good	only	when	the	data	is	consistent	across	all	the	nodes	where	the	data	is
stored.
Click	here	to	view	code	image

Bucket	bucket	=	connection
				.createBucket(bucketName)
				.withRetrier(attempts(3))
				.allowSiblings(siblingsAllowed)
				.nVal(numberOfReplicasOfTheData)
				.w(numberOfNodesToRespondToWrite)
				.r(numberOfNodesToRespondToRead)
				.execute();

If	we	need	data	in	every	node	to	be	consistent,	we	can	increase	the
numberOfNodesToRespondToWrite	set	by	w	to	be	the	same	as	nVal.	Of	course	doing	that	will	decrease
the	write	performance	of	the	cluster.	To	improve	on	write	or	read	conflicts,	we	can	change	the
allowSiblings	flag	during	bucket	creation:	If	it	is	set	to	false,	we	let	the	last	write	to	win	and	not
create	siblings.

8.2.2.	Transactions
Different	products	of	the	key-value	store	kind	have	different	specifications	of	transactions.	Generally
speaking,	there	are	no	guarantees	on	the	writes.	Many	data	stores	do	implement	transactions	in
different	ways.	Riak	uses	the	concept	of	quorum	(“Quorums,”	p.	57)	implemented	by	using	the	W
value—replication	factor—during	the	write	API	call.
Assume	we	have	a	Riak	cluster	with	a	replication	factor	of	5	and	we	supply	the	W	value	of	3.	When

writing,	the	write	is	reported	as	successful	only	when	it	is	written	and	reported	as	a	success	on	at	least
three	of	the	nodes.	This	allows	Riak	to	have	write	tolerance;	in	our	example,	with	N	equal	to	5	and
with	a	W	value	of	3,	the	cluster	can	tolerate	N	-	W	=	2	nodes	being	down	for	write	operations,	though
we	would	still	have	lost	some	data	on	those	nodes	for	read.

8.2.3.	Query	Features
All	key-value	stores	can	query	by	the	key—and	that’s	about	it.	If	you	have	requirements	to	query	by

using	some	attribute	of	the	value	column,	it’s	not	possible	to	use	the	database:	Your	application	needs
to	read	the	value	to	figure	out	if	the	attribute	meets	the	conditions.
Query	by	key	also	has	an	interesting	side	effect.	What	if	we	don’t	know	the	key,	especially	during

ad-hoc	querying	during	debugging?	Most	of	the	data	stores	will	not	give	you	a	list	of	all	the	primary
keys;	even	if	they	did,	retrieving	lists	of	keys	and	then	querying	for	the	value	would	be	very
cumbersome.	Some	key-value	databases	get	around	this	by	providing	the	ability	to	search	inside	the
value,	such	as	Riak	Search	that	allows	you	to	query	the	data	just	like	you	would	query	it	using	Lucene
indexes.
While	using	key-value	stores,	lots	of	thought	has	to	be	given	to	the	design	of	the	key.	Can	the	key

be	generated	using	some	algorithm?	Can	the	key	be	provided	by	the	user	(user	ID,	email,	etc.)?	Or
derived	from	timestamps	or	other	data	that	can	be	derived	outside	of	the	database?
These	query	characteristics	make	key-value	stores	likely	candidates	for	storing	session	data	(with

the	session	ID	as	the	key),	shopping	cart	data,	user	profiles,	and	so	on.	The	expiry_secs	property	can
be	used	to	expire	keys	after	a	certain	time	interval,	especially	for	session/shopping	cart	objects.
Click	here	to	view	code	image

Bucket	bucket	=	getBucket(bucketName);
IRiakObject	riakObject	=	bucket.store(key,	value).execute();

When	writing	to	the	Riak	bucket	using	the	store	API,	the	object	is	stored	for	the	key	provided.
Similarly,	we	can	get	the	value	stored	for	the	key	using	the	fetch	API.
Click	here	to	view	code	image

Bucket	bucket	=	getBucket(bucketName);
IRiakObject	riakObject	=	bucket.fetch(key).execute();
byte[]	bytes	=	riakObject.getValue();
String	value	=	new	String(bytes);

Riak	provides	an	HTTP-based	interface,	so	that	all	operations	can	be	performed	from	the	web
browser	or	on	the	command	line	using	curl.	Let’s	save	this	data	to	Riak:
Click	here	to	view	code	image

{
"lastVisit":1324669989288,
"user":{
		"customerId":"91cfdf5bcb7c",
		"name":"buyer",
		"countryCode":"US",
		"tzOffset":0
		}
}

Use	the	curl	command	to	POST	the	data,	storing	the	data	in	the	session	bucket	with	the	key	of
a7e618d9db25	(we	have	to	provide	this	key):
Click	here	to	view	code	image

curl	-v	-X	POST	-d	'
{	"lastVisit":1324669989288,
		"user":{"customerId":"91cfdf5bcb7c",
		"name":"buyer",
		"countryCode":"US",
		"tzOffset":0}
}'
-H	"Content-Type:	application/json"
http://localhost:8098/buckets/session/keys/a7e618d9db25

The	data	for	the	key	a7e618d9db25	can	be	fetched	by	using	the	curl	command:
Click	here	to	view	code	image

curl	-i	http://localhost:8098/buckets/session/keys/a7e618d9db25

8.2.4.	Structure	of	Data
Key-value	databases	don’t	care	what	is	stored	in	the	value	part	of	the	key-value	pair.	The	value	can	be
a	blob,	text,	JSON,	XML,	and	so	on.	In	Riak,	we	can	use	the	Content-Type	in	the	POST	request	to
specify	the	data	type.

8.2.5.	Scaling
Many	key-value	stores	scale	by	using	sharding	(“Sharding,”	p.	38).	With	sharding,	the	value	of	the
key	determines	on	which	node	the	key	is	stored.	Let’s	assume	we	are	sharding	by	the	first	character	of
the	key;	if	the	key	is	f4b19d79587d,	which	starts	with	an	f,	it	will	be	sent	to	different	node	than	the
key	ad9c7a396542.	This	kind	of	sharding	setup	can	increase	performance	as	more	nodes	are	added	to
the	cluster.
Sharding	also	introduces	some	problems.	If	the	node	used	to	store	f	goes	down,	the	data	stored	on

that	node	becomes	unavailable,	nor	can	new	data	be	written	with	keys	that	start	with	f.
Data	stores	such	as	Riak	allow	you	to	control	the	aspects	of	the	CAP	Theorem	(“The	CAP

Theorem,”	p.	53):	N	(number	of	nodes	to	store	the	key-value	replicas),	R	(number	of	nodes	that	have
to	have	the	data	being	fetched	before	the	read	is	considered	successful),	and	W	(the	number	of	nodes
the	write	has	to	be	written	to	before	it	is	considered	successful).
Let’s	assume	we	have	a	5-node	Riak	cluster.	Setting	N	to	3	means	that	all	data	is	replicated	to	at	least

three	nodes,	setting	R	to	2	means	any	two	nodes	must	reply	to	a	GET	request	for	it	to	be	considered
successful,	and	setting	W	to	2	ensures	that	the	PUT	request	is	written	to	two	nodes	before	the	write	is
considered	successful.
These	settings	allow	us	to	fine-tune	node	failures	for	read	or	write	operations.	Based	on	our	need,

we	can	change	these	values	for	better	read	availability	or	write	availability.	Generally	speaking
choose	a	W	value	to	match	your	consistency	needs;	these	values	can	be	set	as	defaults	during	bucket
creation.

8.3.	Suitable	Use	Cases
Let’s	discuss	some	of	the	problems	where	key-value	stores	are	a	good	fit.

8.3.1.	Storing	Session	Information
Generally,	every	web	session	is	unique	and	is	assigned	a	unique	sessionid	value.	Applications	that
store	the	sessionid	on	disk	or	in	an	RDBMS	will	greatly	benefit	from	moving	to	a	key-value	store,
since	everything	about	the	session	can	be	stored	by	a	single	PUT	request	or	retrieved	using	GET.	This
single-request	operation	makes	it	very	fast,	as	everything	about	the	session	is	stored	in	a	single
object.	Solutions	such	as	Memcached	are	used	by	many	web	applications,	and	Riak	can	be	used	when
availability	is	important.

8.3.2.	User	Profiles,	Preferences
Almost	every	user	has	a	unique	userId,	username,	or	some	other	attribute,	as	well	as	preferences	such
as	language,	color,	timezone,	which	products	the	user	has	access	to,	and	so	on.	This	can	all	be	put	into
an	object,	so	getting	preferences	of	a	user	takes	a	single	GET	operation.	Similarly,	product	profiles
can	be	stored.

8.3.3.	Shopping	Cart	Data
E-commerce	websites	have	shopping	carts	tied	to	the	user.	As	we	want	the	shopping	carts	to	be
available	all	the	time,	across	browsers,	machines,	and	sessions,	all	the	shopping	information	can	be
put	into	the	value	where	the	key	is	the	userid.	A	Riak	cluster	would	be	best	suited	for	these	kinds	of
applications.

8.4.	When	Not	to	Use
There	are	problem	spaces	where	key-value	stores	are	not	the	best	solution.

8.4.1.	Relationships	among	Data
If	you	need	to	have	relationships	between	different	sets	of	data,	or	correlate	the	data	between	different
sets	of	keys,	key-value	stores	are	not	the	best	solution	to	use,	even	though	some	key-value	stores
provide	link-walking	features.

8.4.2.	Multioperation	Transactions
If	you’re	saving	multiple	keys	and	there	is	a	failure	to	save	any	one	of	them,	and	you	want	to	revert
or	roll	back	the	rest	of	the	operations,	key-value	stores	are	not	the	best	solution	to	be	used.

8.4.3.	Query	by	Data
If	you	need	to	search	the	keys	based	on	something	found	in	the	value	part	of	the	key-value	pairs,	then
key-value	stores	are	not	going	to	perform	well	for	you.	There	is	no	way	to	inspect	the	value	on	the
database	side,	with	the	exception	of	some	products	like	Riak	Search	or	indexing	engines	like	Lucene
[Lucene]	or	Solr	[Solr].

8.4.4.	Operations	by	Sets
Since	operations	are	limited	to	one	key	at	a	time,	there	is	no	way	to	operate	upon	multiple	keys	at	the
same	time.	If	you	need	to	operate	upon	multiple	keys,	you	have	to	handle	this	from	the	client	side.

Chapter	9.	Document	Databases

Documents	are	the	main	concept	in	document	databases.	The	database	stores	and	retrieves	documents,
which	can	be	XML,	JSON,	BSON,	and	so	on.	These	documents	are	self-describing,	hierarchical	tree
data	structures	which	can	consist	of	maps,	collections,	and	scalar	values.	The	documents	stored	are
similar	to	each	other	but	do	not	have	to	be	exactly	the	same.	Document	databases	store	documents	in
the	value	part	of	the	key-value	store;	think	about	document	databases	as	key-value	stores	where	the
value	is	examinable.	Let’s	look	at	how	terminology	compares	in	Oracle	and	MongoDB.

The	_id	is	a	special	field	that	is	found	on	all	documents	in	Mongo,	just	like	ROWID	in	Oracle.	In
MongoDB,	_id	can	be	assigned	by	the	user,	as	long	as	it	is	unique.

9.1.	What	Is	a	Document	Database?
Click	here	to	view	code	image

{	"firstname":	"Martin",
		"likes":	["Biking",
													"Photography"],
		"lastcity":	"Boston",
		"lastVisited":
}

The	above	document	can	be	considered	a	row	in	a	traditional	RDBMS.	Let’s	look	at	another
document:
Click	here	to	view	code	image

{
		"firstname":	"Pramod",
		"citiesvisited":	["Chicago",	"London",	"Pune",	"Bangalore"],
		"addresses":	[
				{	"state":	"AK",
						"city":	"DILLINGHAM",
						"type":	"R"
				},
				{	"state":	"MH",
						"city":	"PUNE",
						"type":	"R"	}
],
		"lastcity":	"Chicago"
}

Looking	at	the	documents,	we	can	see	that	they	are	similar,	but	have	differences	in	attribute	names.
This	is	allowed	in	document	databases.	The	schema	of	the	data	can	differ	across	documents,	but	these
documents	can	still	belong	to	the	same	collection—unlike	an	RDBMS	where	every	row	in	a	table	has
to	follow	the	same	schema.	We	represent	a	list	of	citiesvisited	as	an	array,	or	a	list	of	addresses	as
list	of	documents	embedded	inside	the	main	document.	Embedding	child	documents	as	subobjects
inside	documents	provides	for	easy	access	and	better	performance.
If	you	look	at	the	documents,	you	will	see	that	some	of	the	attributes	are	similar,	such	as	firstname

or	city.	At	the	same	time,	there	are	attributes	in	the	second	document	which	do	not	exist	in	the	first
document,	such	as	addresses,	while	likes	is	in	the	first	document	but	not	the	second.
This	different	representation	of	data	is	not	the	same	as	in	RDBMS	where	every	column	has	to	be

defined,	and	if	it	does	not	have	data	it	is	marked	as	empty	or	set	to	null.	In	documents,	there	are	no
empty	attributes;	if	a	given	attribute	is	not	found,	we	assume	that	it	was	not	set	or	not	relevant	to	the
document.	Documents	allow	for	new	attributes	to	be	created	without	the	need	to	define	them	or	to
change	the	existing	documents.
Some	of	the	popular	document	databases	we	have	seen	are	MongoDB	[MongoDB],	CouchDB

[CouchDB],	Terrastore	[Terrastore],	OrientDB	[OrientDB],	RavenDB	[RavenDB],	and	of	course	the
well-known	and	often	reviled	Lotus	Notes	[Notes	Storage	Facility]	that	uses	document	storage.

9.2.	Features
While	there	are	many	specialized	document	databases,	we	will	use	MongoDB	as	a	representative	of
the	feature	set.	Keep	in	mind	that	each	product	has	some	features	that	may	not	be	found	in	other
document	databases.
Let’s	take	some	time	to	understand	how	MongoDB	works.	Each	MongoDB	instance	has	multiple

databases,	and	each	database	can	have	multiple	collections.	When	we	compare	this	with	RDBMS,	an
RDBMS	instance	is	the	same	as	MongoDB	instance,	the	schemas	in	RDBMS	are	similar	to	MongoDB
databases,	and	the	RDBMS	tables	are	collections	in	MongoDB.	When	we	store	a	document,	we	have	to
choose	which	database	and	collection	this	document	belongs	in—for	example,
database.collection.insert(document),	which	is	usually	represented	as
db.coll.insert(document).

9.2.1.	Consistency
Consistency	in	MongoDB	database	is	configured	by	using	the	replica	sets	and	choosing	to	wait	for
the	writes	to	be	replicated	to	all	the	slaves	or	a	given	number	of	slaves.	Every	write	can	specify	the
number	of	servers	the	write	has	to	be	propagated	to	before	it	returns	as	successful.
A	command	like	db.runCommand({	getlasterror	:	1	,	w	:	"majority"	})	tells	the	database

how	strong	is	the	consistency	you	want.	For	example,	if	you	have	one	server	and	specify	the	w	as
majority,	the	write	will	return	immediately	since	there	is	only	one	node.	If	you	have	three	nodes	in
the	replica	set	and	specify	w	as	majority,	the	write	will	have	to	complete	at	a	minimum	of	two	nodes
before	it	is	reported	as	a	success.	You	can	increase	the	w	value	for	stronger	consistency	but	you	will
suffer	on	write	performance,	since	now	the	writes	have	to	complete	at	more	nodes.	Replica	sets	also
allow	you	to	increase	the	read	performance	by	allowing	reading	from	slaves	by	setting	slaveOk;	this
parameter	can	be	set	on	the	connection,	or	database,	or	collection,	or	individually	for	each	operation.
Click	here	to	view	code	image

Mongo	mongo	=	new	Mongo("localhost:27017");
mongo.slaveOk();

Here	we	are	setting	slaveOk	per	operation,	so	that	we	can	decide	which	operations	can	work	with
data	from	the	slave	node.
Click	here	to	view	code	image

DBCollection	collection	=	getOrderCollection();
BasicDBObject	query	=	new	BasicDBObject();
query.put("name",	"Martin");
DBCursor	cursor	=	collection.find(query).slaveOk();

Similar	to	various	options	available	for	read,	you	can	change	the	settings	to	achieve	strong	write
consistency,	if	desired.	By	default,	a	write	is	reported	successful	once	the	database	receives	it;	you	can
change	this	so	as	to	wait	for	the	writes	to	be	synced	to	disk	or	to	propagate	to	two	or	more	slaves.
This	is	known	as	WriteConcern:	You	make	sure	that	certain	writes	are	written	to	the	master	and	some
slaves	by	setting	WriteConcern	to	REPLICAS_SAFE.	Shown	below	is	code	where	we	are	setting	the
WriteConcern	for	all	writes	to	a	collection:
Click	here	to	view	code	image

DBCollection	shopping	=	database.getCollection("shopping");
shopping.setWriteConcern(REPLICAS_SAFE);

WriteConcern	can	also	be	set	per	operation	by	specifying	it	on	the	save	command:
Click	here	to	view	code	image

WriteResult	result	=	shopping.insert(order,	REPLICAS_SAFE);

There	is	a	tradeoff	that	you	need	to	carefully	think	about,	based	on	your	application	needs	and
business	requirements,	to	decide	what	settings	make	sense	for	slaveOk	during	read	or	what	safety
level	you	desire	during	write	with	WriteConcern.

9.2.2.	Transactions
Transactions,	in	the	traditional	RDBMS	sense,	mean	that	you	can	start	modifying	the	database	with
insert,	update,	or	delete	commands	over	different	tables	and	then	decide	if	you	want	to	keep	the
changes	or	not	by	using	commit	or	rollback.	These	constructs	are	generally	not	available	in	NoSQL
solutions—a	write	either	succeeds	or	fails.	Transactions	at	the	single-document	level	are	known	as
atomic	transactions.	Transactions	involving	more	than	one	operation	are	not	possible,	although
there	are	products	such	as	RavenDB	that	do	support	transactions	across	multiple	operations.
By	default,	all	writes	are	reported	as	successful.	A	finer	control	over	the	write	can	be	achieved	by

using	WriteConcern	parameter.	We	ensure	that	order	is	written	to	more	than	one	node	before	it’s
reported	successful	by	using	WriteConcern.REPLICAS_SAFE.	Different	levels	of	WriteConcern	let	you
choose	the	safety	level	during	writes;	for	example,	when	writing	log	entries,	you	can	use	lowest	level
of	safety,	WriteConcern.NONE.
Click	here	to	view	code	image

final	Mongo	mongo	=	new	Mongo(mongoURI);
mongo.setWriteConcern(REPLICAS_SAFE);
DBCollection	shopping	=	mongo.getDB(orderDatabase)
																												.getCollection(shoppingCollection);
try	{
				WriteResult	result	=	shopping.insert(order,	REPLICAS_SAFE);
//Writes	made	it	to	primary	and	at	least	one	secondary
}	catch	(MongoException	writeException)	{
//Writes	did	not	make	it	to	minimum	of	two	nodes	including	primary
				dealWithWriteFailure(order,	writeException);
}

9.2.3.	Availability
The	CAP	theorem	(“The	CAP	Theorem,”	p.	53)	dictates	that	we	can	have	only	two	of	Consistency,
Availability,	and	Partition	Tolerance.	Document	databases	try	to	improve	on	availability	by
replicating	data	using	the	master-slave	setup.	The	same	data	is	available	on	multiple	nodes	and	the
clients	can	get	to	the	data	even	when	the	primary	node	is	down.	Usually,	the	application	code	does	not
have	to	determine	if	the	primary	node	is	available	or	not.	MongoDB	implements	replication,
providing	high	availability	using	replica	sets.
In	a	replica	set,	there	are	two	or	more	nodes	participating	in	an	asynchronous	master-slave

replication.	The	replica-set	nodes	elect	the	master,	or	primary,	among	themselves.	Assuming	all	the
nodes	have	equal	voting	rights,	some	nodes	can	be	favored	for	being	closer	to	the	other	servers,	for
having	more	RAM,	and	so	on;	users	can	affect	this	by	assigning	a	priority—a	number	between	0	and
1000—to	a	node.
All	requests	go	to	the	master	node,	and	the	data	is	replicated	to	the	slave	nodes.	If	the	master	node

goes	down,	the	remaining	nodes	in	the	replica	set	vote	among	themselves	to	elect	a	new	master;	all
future	requests	are	routed	to	the	new	master,	and	the	slave	nodes	start	getting	data	from	the	new
master.	When	the	node	that	failed	comes	back	online,	it	joins	in	as	a	slave	and	catches	up	with	the	rest
of	the	nodes	by	pulling	all	the	data	it	needs	to	get	current.
Figure	9.1	is	an	example	configuration	of	replica	sets.	We	have	two	nodes,	mongo	A	and	mongo	B,

running	the	MongoDB	database	in	the	primary	data-center,	and	mongo	C	in	the	secondary	datacenter.
If	we	want	nodes	in	the	primary	datacenter	to	be	elected	as	primary	nodes,	we	can	assign	them	a
higher	priority	than	the	other	nodes.	More	nodes	can	be	added	to	the	replica	sets	without	having	to
take	them	offline.

Figure	9.1.	Replica	set	configuration	with	higher	priority	assigned	to	nodes	in	the	same
datacenter

The	application	writes	or	reads	from	the	primary	(master)	node.	When	connection	is	established,
the	application	only	needs	to	connect	to	one	node	(primary	or	not,	does	not	matter)	in	the	replica	set,
and	the	rest	of	the	nodes	are	discovered	automatically.	When	the	primary	node	goes	down,	the	driver
talks	to	the	new	primary	elected	by	the	replica	set.	The	application	does	not	have	to	manage	any	of	the
communication	failures	or	node	selection	criteria.	Using	replica	sets	gives	you	the	ability	to	have	a
highly	available	document	data	store.

Replica	sets	are	generally	used	for	data	redundancy,	automated	failover,	read	scaling,	server
maintenance	without	downtime,	and	disaster	recovery.	Similar	availability	setups	can	be	achieved	with
CouchDB,	RavenDB,	Terrastore,	and	other	products.

9.2.4.	Query	Features
Document	databases	provide	different	query	features.	CouchDB	allows	you	to	query	via	views—
complex	queries	on	documents	which	can	be	either	materialized	(“Materialized	Views,”	p.	30)	or
dynamic	(think	of	them	as	RDBMS	views	which	are	either	materialized	or	not).	With	CouchDB,	if	you
need	to	aggregate	the	number	of	reviews	for	a	product	as	well	as	the	average	rating,	you	could	add	a
view	implemented	via	map-reduce	(“Basic	Map-Reduce,”	p.	68)	to	return	the	count	of	reviews	and	the
average	of	their	ratings.
When	there	are	many	requests,	you	don’t	want	to	compute	the	count	and	average	for	every	request;

instead	you	can	add	a	materialized	view	that	precomputes	the	values	and	stores	the	results	in	the
database.	These	materialized	views	are	updated	when	queried,	if	any	data	was	changed	since	the	last
update.
One	of	the	good	features	of	document	databases,	as	compared	to	key-value	stores,	is	that	we	can

query	the	data	inside	the	document	without	having	to	retrieve	the	whole	document	by	its	key	and	then
introspect	the	document.	This	feature	brings	these	databases	closer	to	the	RDBMS	query	model.
MongoDB	has	a	query	language	which	is	expressed	via	JSON	and	has	constructs	such	as	$query

for	the	where	clause,	$orderby	for	sorting	the	data,	or	$explain	to	show	the	execution	plan	of	the
query.	There	are	many	more	constructs	like	these	that	can	be	combined	to	create	a	MongoDB	query.
Let’s	look	at	certain	queries	that	we	can	do	against	MongoDB.	Suppose	we	want	to	return	all	the

documents	in	an	order	collection	(all	rows	in	the	order	table).	The	SQL	for	this	would	be:
SELECT	*	FROM	order

The	equivalent	query	in	Mongo	shell	would	be:
db.order.find()

Selecting	the	orders	for	a	single	customerId	of	883c2c5b4e5b	would	be:
Click	here	to	view	code	image

SELECT	*	FROM	order	WHERE	customerId	=	"883c2c5b4e5b"

The	equivalent	query	in	Mongo	to	get	all	orders	for	a	single	customerId	of	883c2c5b4e5b:
Click	here	to	view	code	image

db.order.find({"customerId":"883c2c5b4e5b"})

Similarly,	selecting	orderId	and	orderDate	for	one	customer	in	SQL	would	be:
Click	here	to	view	code	image

SELECT	orderId,orderDate	FROM	order	WHERE	customerId	=	"883c2c5b4e5b"

and	the	equivalent	in	Mongo	would	be:
Click	here	to	view	code	image

db.order.find({customerId:"883c2c5b4e5b"},{orderId:1,orderDate:1})

Similarly,	queries	to	count,	sum,	and	so	on	are	all	available.	Since	the	documents	are	aggregated
objects,	it	is	really	easy	to	query	for	documents	that	have	to	be	matched	using	the	fields	with	child

objects.	Let’s	say	we	want	to	query	for	all	the	orders	where	one	of	the	items	ordered	has	a	name	like
Refactoring.	The	SQL	for	this	requirement	would	be:
Click	here	to	view	code	image

SELECT	*	FROM	customerOrder,	orderItem,	product
WHERE
customerOrder.orderId	=	orderItem.customerOrderId
AND	orderItem.productId	=	product.productId
AND	product.name	LIKE	'%Refactoring%'

and	the	equivalent	Mongo	query	would	be:
Click	here	to	view	code	image

db.orders.find({"items.product.name":/Refactoring/})

The	query	for	MongoDB	is	simpler	because	the	objects	are	embedded	inside	a	single	document	and
you	can	query	based	on	the	embedded	child	documents.

9.2.5.	Scaling
The	idea	of	scaling	is	to	add	nodes	or	change	data	storage	without	simply	migrating	the	database	to	a
bigger	box.	We	are	not	talking	about	making	application	changes	to	handle	more	load;	instead,	we	are
interested	in	what	features	are	in	the	database	so	that	it	can	handle	more	load.
Scaling	for	heavy-read	loads	can	be	achieved	by	adding	more	read	slaves,	so	that	all	the	reads	can

be	directed	to	the	slaves.	Given	a	heavy-read	application,	with	our	3-node	replica-set	cluster,	we	can
add	more	read	capacity	to	the	cluster	as	the	read	load	increases	just	by	adding	more	slave	nodes	to	the
replica	set	to	execute	reads	with	the	slaveOk	flag	(Figure	9.2).	This	is	horizontal	scaling	for	reads.

Figure	9.2.	Adding	a	new	node,	mongo	D,	to	an	existing	replica-set	cluster
Once	the	new	node,	mongo	D,	is	started,	it	needs	to	be	added	to	the	replica	set.

rs.add("mongod:27017");

When	a	new	node	is	added,	it	will	sync	up	with	the	existing	nodes,	join	the	replica	set	as	secondary
node,	and	start	serving	read	requests.	An	advantage	of	this	setup	is	that	we	do	not	have	to	restart	any
other	nodes,	and	there	is	no	downtime	for	the	application	either.
When	we	want	to	scale	for	write,	we	can	start	sharding	(“Sharding,”	p.	38)	the	data.	Sharding	is

similar	to	partitions	in	RDBMS	where	we	split	data	by	value	in	a	certain	column,	such	as	state	or	year.

With	RDBMS,	partitions	are	usually	on	the	same	node,	so	the	client	application	does	not	have	to	query
a	specific	partition	but	can	keep	querying	the	base	table;	the	RDBMS	takes	care	of	finding	the	right
partition	for	the	query	and	returns	the	data.
In	sharding,	the	data	is	also	split	by	certain	field,	but	then	moved	to	different	Mongo	nodes.	The

data	is	dynamically	moved	between	nodes	to	ensure	that	shards	are	always	balanced.	We	can	add	more
nodes	to	the	cluster	and	increase	the	number	of	writable	nodes,	enabling	horizontal	scaling	for	writes.
Click	here	to	view	code	image

db.runCommand({	shardcollection	:	"ecommerce.customer",
																	key	:	{firstname	:	1}	})

Splitting	the	data	on	the	first	name	of	the	customer	ensures	that	the	data	is	balanced	across	the
shards	for	optimal	write	performance;	furthermore,	each	shard	can	be	a	replica	set	ensuring	better
read	performance	within	the	shard	(Figure	9.3).	When	we	add	a	new	shard	to	this	existing	sharded
cluster,	the	data	will	now	be	balanced	across	four	shards	instead	of	three.	As	all	this	data	movement
and	infrastructure	refactoring	is	happening,	the	application	will	not	experience	any	downtime,
although	the	cluster	may	not	perform	optimally	when	large	amounts	of	data	are	being	moved	to
rebalance	the	shards.

Figure	9.3.	MongoDB	sharded	setup	where	each	shard	is	a	replica	set
The	shard	key	plays	an	important	role.	You	may	want	to	place	your	MongoDB	database	shards

closer	to	their	users,	so	sharding	based	on	user	location	may	be	a	good	idea.	When	sharding	by
customer	location,	all	user	data	for	the	East	Coast	of	the	USA	is	in	the	shards	that	are	served	from	the
East	Coast,	and	all	user	data	for	the	West	Coast	is	in	the	shards	that	are	on	the	West	Coast.

9.3.	Suitable	Use	Cases
9.3.1.	Event	Logging
Applications	have	different	event	logging	needs;	within	the	enterprise,	there	are	many	different
applications	that	want	to	log	events.	Document	databases	can	store	all	these	different	types	of	events
and	can	act	as	a	central	data	store	for	event	storage.	This	is	especially	true	when	the	type	of	data	being
captured	by	the	events	keeps	changing.	Events	can	be	sharded	by	the	name	of	the	application	where	the
event	originated	or	by	the	type	of	event	such	as	order_processed	or	customer_logged.

9.3.2.	Content	Management	Systems,	Blogging	Platforms
Since	document	databases	have	no	predefined	schemas	and	usually	understand	JSON	documents,	they
work	well	in	content	management	systems	or	applications	for	publishing	websites,	managing	user

comments,	user	registrations,	profiles,	web-facing	documents.

9.3.3.	Web	Analytics	or	Real-Time	Analytics
Document	databases	can	store	data	for	real-time	analytics;	since	parts	of	the	document	can	be
updated,	it’s	very	easy	to	store	page	views	or	unique	visitors,	and	new	metrics	can	be	easily	added
without	schema	changes.

9.3.4.	E-Commerce	Applications
E-commerce	applications	often	need	to	have	flexible	schema	for	products	and	orders,	as	well	as	the
ability	to	evolve	their	data	models	without	expensive	database	refactoring	or	data	migration
(“Schema	Changes	in	a	NoSQL	Data	Store,”	p.	128).

9.4.	When	Not	to	Use
There	are	problem	spaces	where	document	databases	are	not	the	best	solution.

9.4.1.	Complex	Transactions	Spanning	Different	Operations
If	you	need	to	have	atomic	cross-document	operations,	then	document	databases	may	not	be	for	you.
However,	there	are	some	document	databases	that	do	support	these	kinds	of	operations,	such	as
RavenDB.

9.4.2.	Queries	against	Varying	Aggregate	Structure
Flexible	schema	means	that	the	database	does	not	enforce	any	restrictions	on	the	schema.	Data	is
saved	in	the	form	of	application	entities.	If	you	need	to	query	these	entities	ad	hoc,	your	queries	will
be	changing	(in	RDBMS	terms,	this	would	mean	that	as	you	join	criteria	between	tables,	the	tables	to
join	keep	changing).	Since	the	data	is	saved	as	an	aggregate,	if	the	design	of	the	aggregate	is
constantly	changing,	you	need	to	save	the	aggregates	at	the	lowest	level	of	granularity—basically,
you	need	to	normalize	the	data.	In	this	scenario,	document	databases	may	not	work.

Chapter	10.	Column-Family	Stores

Column-family	stores,	such	as	Cassandra	[Cassandra],	HBase	[Hbase],	Hypertable	[Hypertable],	and
Amazon	SimpleDB	[Amazon	SimpleDB],	allow	you	to	store	data	with	keys	mapped	to	values	and	the
values	grouped	into	multiple	column	families,	each	column	family	being	a	map	of	data.

10.1.	What	Is	a	Column-Family	Data	Store?
There	are	many	column-family	databases.	In	this	chapter,	we	will	talk	about	Cassandra	but	also
reference	other	column-family	databases	to	discuss	features	that	may	be	of	interest	in	particular
scenarios.
Column-family	databases	store	data	in	column	families	as	rows	that	have	many	columns	associated

with	a	row	key	(Figure	10.1).	Column	families	are	groups	of	related	data	that	is	often	accessed
together.	For	a	Customer,	we	would	often	access	their	Profile	information	at	the	same	time,	but	not
their	Orders.

Figure	10.1.	Cassandra’s	data	model	with	column	families
Cassandra	is	one	of	the	popular	column-family	databases;	there	are	others,	such	as	HBase,

Hypertable,	and	Amazon	DynamoDB	[Amazon	DynamoDB].	Cassandra	can	be	described	as	fast	and
easily	scalable	with	write	operations	spread	across	the	cluster.	The	cluster	does	not	have	a	master
node,	so	any	read	and	write	can	be	handled	by	any	node	in	the	cluster.

10.2.	Features

Let’s	start	by	looking	at	how	data	is	structured	in	Cassandra.	The	basic	unit	of	storage	in	Cassandra	is
a	column.	A	Cassandra	column	consists	of	a	name-value	pair	where	the	name	also	behaves	as	the	key.
Each	of	these	key-value	pairs	is	a	single	column	and	is	always	stored	with	a	timestamp	value.	The
timestamp	is	used	to	expire	data,	resolve	write	conflicts,	deal	with	stale	data,	and	do	other	things.
Once	the	column	data	is	no	longer	used,	the	space	can	be	reclaimed	later	during	a	compaction	phase.
Click	here	to	view	code	image

{
		name:	"fullName",
		value:	"Martin	Fowler",
		timestamp:	12345667890
}

The	column	has	a	key	of	firstName	and	the	value	of	Martin	and	has	a	timestamp	attached	to	it.	A
row	is	a	collection	of	columns	attached	or	linked	to	a	key;	a	collection	of	similar	rows	makes	a
column	family.	When	the	columns	in	a	column	family	are	simple	columns,	the	column	family	is
known	as	standard	column	family.
Click	here	to	view	code	image

//column	family
{
//row
		"pramod-sadalage"	:	{
					firstName:	"Pramod",
					lastName:	"Sadalage",
					lastVisit:	"2012/12/12"
		}
//row
		"martin-fowler"	:	{
					firstName:	"Martin",
					lastName:	"Fowler",
					location:	"Boston"
		}
}

Each	column	family	can	be	compared	to	a	container	of	rows	in	an	RDBMS	table	where	the	key
identifies	the	row	and	the	row	consists	on	multiple	columns.	The	difference	is	that	various	rows	do
not	have	to	have	the	same	columns,	and	columns	can	be	added	to	any	row	at	any	time	without	having
to	add	it	to	other	rows.	We	have	the	pramod-sadalage	row	and	the	martin-fowler	row	with	different
columns;	both	rows	are	part	of	the	column	family.
When	a	column	consists	of	a	map	of	columns,	then	we	have	a	super	column.	A	super	column

consists	of	a	name	and	a	value	which	is	a	map	of	columns.	Think	of	a	super	column	as	a	container	of
columns.
Click	here	to	view	code	image

{
		name:	"book:978-0767905923",
		value:	{
				author:	"Mitch	Albon",
				title:	"Tuesdays	with	Morrie",
				isbn:	"978-0767905923"
		}
}

When	we	use	super	columns	to	create	a	column	family,	we	get	a	super	column	family.
Click	here	to	view	code	image

//super	column	family
{
//row
name:	"billing:martin-fowler",
value:	{
		address:	{
				name:	"address:default",
				value:	{
						fullName:	"Martin	Fowler",
						street:"100	N.	Main	Street",
						zip:	"20145"
				}
		},
		billing:	{
				name:	"billing:default",
				value:	{
						creditcard:	"8888-8888-8888-8888",
						expDate:	"12/2016"
						}
				}
		}
//row
name:	"billing:pramod-sadalage",
value:	{
		address:	{
				name:	"address:default",
				value:	{
						fullName:	"Pramod	Sadalage",
						street:"100	E.	State	Parkway",
						zip:	"54130"
				}
			},
			billing:	{
						name:	"billing:default",
						value:	{
								creditcard:	"9999-8888-7777-4444",
								expDate:	"01/2016"
								}
						}
			}
}

Super	column	families	are	good	to	keep	related	data	together,	but	when	some	of	the	columns	are
not	needed	most	of	the	time,	the	columns	are	still	fetched	and	deserialized	by	Cassandra,	which	may
not	be	optimal.
Cassandra	puts	the	standard	and	super	column	families	into	keyspaces.	A	keyspace	is	similar	to	a

database	in	RDBMS	where	all	column	families	related	to	the	application	are	stored.	Keyspaces	have	to
be	created	so	that	column	families	can	be	assigned	to	them:
create	keyspace	ecommerce

10.2.1.	Consistency
When	a	write	is	received	by	Cassandra,	the	data	is	first	recorded	in	a	commit	log,	then	written	to	an
in-memory	structure	known	as	memtable.	A	write	operation	is	considered	successful	once	it’s	written
to	the	commit	log	and	the	memtable.	Writes	are	batched	in	memory	and	periodically	written	out	to
structures	known	as	SSTable.	SSTables	are	not	written	to	again	after	they	are	flushed;	if	there	are
changes	to	the	data,	a	new	SSTable	is	written.	Unused	SSTables	are	reclaimed	by	compactation.
Let’s	look	at	the	read	operation	to	see	how	consistency	settings	affect	it.	If	we	have	a	consistency

setting	of	ONE	as	the	default	for	all	read	operations,	then	when	a	read	request	is	made,	Cassandra
returns	the	data	from	the	first	replica,	even	if	the	data	is	stale.	If	the	data	is	stale,	subsequent	reads	will
get	the	latest	(newest)	data;	this	process	is	known	as	read	repair.	The	low	consistency	level	is	good	to
use	when	you	do	not	care	if	you	get	stale	data	and/or	if	you	have	high	read	performance
requirements.
Similarly,	if	you	are	doing	writes,	Cassandra	would	write	to	one	node’s	commit	log	and	return	a

response	to	the	client.	The	consistency	of	ONE	is	good	if	you	have	very	high	write	performance
requirements	and	also	do	not	mind	if	some	writes	are	lost,	which	may	happen	if	the	node	goes	down
before	the	write	is	replicated	to	other	nodes.
Click	here	to	view	code	image

quorum	=	new	ConfigurableConsistencyLevel();
quorum.setDefaultReadConsistencyLevel(HConsistencyLevel.QUORUM);
quorum.setDefaultWriteConsistencyLevel(HConsistencyLevel.QUORUM);

Using	the	QUORUM	consistency	setting	for	both	read	and	write	operations	ensures	that	majority	of	the
nodes	respond	to	the	read	and	the	column	with	the	newest	timestamp	is	returned	back	to	the	client,
while	the	replicas	that	do	not	have	the	newest	data	are	repaired	via	the	read	repair	operations.	During
write	operations,	the	QUORUM	consistency	setting	means	that	the	write	has	to	propagate	to	the	majority
of	the	nodes	before	it	is	considered	successful	and	the	client	is	notified.
Using	ALL	as	consistency	level	means	that	all	nodes	will	have	to	respond	to	reads	or	writes,	which

will	make	the	cluster	not	tolerant	to	faults—even	when	one	node	is	down,	the	write	or	read	is	blocked
and	reported	as	a	failure.	It’s	therefore	upon	the	system	designers	to	tune	the	consistency	levels	as	the
application	requirements	change.	Within	the	same	application,	there	may	be	different	requirements	of
consistency;	they	can	also	change	based	on	each	operation,	for	example	showing	review	comments
for	a	product	has	different	consistency	requirements	compared	to	reading	the	status	of	the	last	order
placed	by	the	customer.
During	keyspace	creation,	we	can	configure	how	many	replicas	of	the	data	we	need	to	store.	This

number	determines	the	replication	factor	of	the	data.	If	you	have	a	replication	factor	of	3,	the	data
copied	on	to	three	nodes.	When	writing	and	reading	data	with	Cassandra,	if	you	specify	the
consistency	values	of	2,	you	get	that	R	+	W	is	greater	than	the	replication	factor	(2	+	2	>	3)	which
gives	you	better	consistency	during	writes	and	reads.
We	can	run	the	node	repair	command	for	the	keyspace	and	force	Cassandra	to	compare	every	key

it’s	responsible	for	with	the	rest	of	the	replicas.	As	this	operation	is	expensive,	we	can	also	just	repair
a	specific	column	family	or	a	list	of	column	families:
repair	ecommerce

repair	ecommerce	customerInfo

While	a	node	is	down,	the	data	that	was	supposed	to	be	stored	by	that	node	is	handed	off	to	other
nodes.	As	the	node	comes	back	online,	the	changes	made	to	the	data	are	handed	back	to	the	node.	This
technique	is	known	as	hinted	handoff.	Hinted	handoff	allows	for	faster	restore	of	failed	nodes.

10.2.2.	Transactions
Cassandra	does	not	have	transactions	in	the	traditional	sense—where	we	could	start	multiple	writes
and	then	decide	if	we	want	to	commit	the	changes	or	not.	In	Cassandra,	a	write	is	atomic	at	the	row
level,	which	means	inserting	or	updating	columns	for	a	given	row	key	will	be	treated	as	a	single	write
and	will	either	succeed	or	fail.	Writes	are	first	written	to	commit	logs	and	memtables,	and	are	only

considered	good	when	the	write	to	commit	log	and	memtable	was	successful.	If	a	node	goes	down,
the	commit	log	is	used	to	apply	changes	to	the	node,	just	like	the	redo	log	in	Oracle.
You	can	use	external	transaction	libraries,	such	as	ZooKeeper	[ZooKeeper],	to	synchronize	your

writes	and	reads.	There	are	also	libraries	such	as	Cages	[Cages]	that	allow	you	to	wrap	your
transactions	over	ZooKeeper.

10.2.3.	Availability
Cassandra	is	by	design	highly	available,	since	there	is	no	master	in	the	cluster	and	every	node	is	a
peer	in	the	cluster.	The	availability	of	a	cluster	can	be	increased	by	reducing	the	consistency	level	of
the	requests.	Availability	is	governed	by	the	(R	+	W)	>	N	formula	(“Quorums,”	p.	57)	where	W	is	the
minimum	number	of	nodes	where	the	write	must	be	successfully	written,	R	is	the	minimum	number	of
nodes	that	must	respond	successfully	to	a	read,	and	N	is	the	number	of	nodes	participating	in	the
replication	of	data.	You	can	tune	the	availability	by	changing	the	R	and	W	values	for	a	fixed	value	of	N.
In	a	10-node	Cassandra	cluster	with	a	replication	factor	for	the	keyspace	set	to	3	(N	=	3),	if	we	set

R	=	2	and	W	=	2,	then	we	have	(2	+	2)	>	3.	In	this	scenario,	when	one	node	goes	down,	availability
is	not	affected	much,	as	the	data	can	be	retrieved	from	the	other	two	nodes.	If	W	=	2	and	R	=	1,	when
two	nodes	are	down	the	cluster	is	not	available	for	write	but	we	can	still	read.	Similarly,	if	R	=	2	and
W	=	1,	we	can	write	but	the	cluster	is	not	available	for	read.	With	the	R	+	W	>	N	equation,	you	are
making	conscious	decisions	about	consistency	tradeoffs.
You	should	set	up	your	keyspaces	and	read/write	operations	based	on	your	needs—higher

availability	for	write	or	higher	availability	for	read.

10.2.4.	Query	Features
When	designing	the	data	model	in	Cassandra,	it	is	advised	to	make	the	columns	and	column	families
optimized	for	reading	the	data,	as	it	does	not	have	a	rich	query	language;	as	data	is	inserted	in	the
column	families,	data	in	each	row	is	sorted	by	column	names.	If	we	have	a	column	that	is	retrieved
much	more	often	than	other	columns,	it’s	better	performance-wise	to	use	that	value	for	the	row	key
instead.
10.2.4.1.	Basic	Queries

Basic	queries	that	can	be	run	using	a	Cassandra	client	include	the	GET,	SET,	and	DEL.	Before	starting	to
query	for	data,	we	have	to	issue	the	keyspace	command	use	ecommerce;.	This	ensures	that	all	of	our
queries	are	run	against	the	keyspace	that	we	put	our	data	into.	Before	starting	to	use	the	column
family	in	the	keyspace,	we	have	to	define	the	column	family.
Click	here	to	view	code	image

CREATE	COLUMN	FAMILY	Customer
WITH	comparator	=	UTF8Type
AND	key_validation_class=UTF8Type
AND	column_metadata	=	[
{column_name:	city,	validation_class:	UTF8Type}
{column_name:	name,	validation_class:	UTF8Type}
{column_name:	web,	validation_class:	UTF8Type}
];

We	have	a	column	family	named	Customer	with	name,	city,	and	web	columns,	and	we	are	inserting
data	in	the	column	family	with	a	Cassandra	client.
Click	here	to	view	code	image

SET	Customer['mfowler']['city']='Boston';

SET	Customer['mfowler']['name']='Martin	Fowler';
SET	Customer['mfowler']['web']='www.martinfowler.com';

Using	the	Hector	[Hector]	Java	client,	we	can	insert	the	same	data	in	the	column	family.
Click	here	to	view	code	image

ColumnFamilyTemplate<String,	String>	template	=
								cassandra.getColumnFamilyTemplate();
ColumnFamilyUpdater<String,	String>	updater	=
								template.createUpdater(key);
for	(String	name	:	values.keySet())	{
				updater.setString(name,	values.get(name));
}
try	{
				template.update(updater);
}	catch	(HectorException	e)	{
				handleException(e);
}

We	can	read	the	data	back	using	the	GET	command.	There	are	multiple	ways	to	get	the	data;	we	can
get	the	whole	column	family.
GET	Customer['mfowler'];

We	can	even	get	just	the	column	we	are	interested	in	from	the	column	family.
GET	Customer['mfowler']['web'];

Getting	the	specific	column	we	need	is	more	efficient,	as	only	the	data	we	care	about	is	returned—
which	saves	lots	of	data	movement,	especially	when	the	column	family	has	a	large	number	of
columns.	Updating	the	data	is	the	same	as	using	the	SET	command	for	the	column	that	needs	to	be	set
to	the	new	value.	Using	DEL	command,	we	can	delete	either	a	column	or	the	entire	column	family.
Click	here	to	view	code	image

DEL	Customer['mfowler']['city'];

DEL	Customer['mfowler'];

10.2.4.2.	Advanced	Queries	and	Indexing

Cassandra	allows	you	to	index	columns	other	than	the	keys	for	the	column	family.	We	can	define	an
index	on	the	city	column.
Click	here	to	view	code	image

UPDATE	COLUMN	FAMILY	Customer
WITH	comparator	=	UTF8Type
AND	column_metadata	=	[{column_name:	city,
																								validation_class:	UTF8Type,
																								index_type:	KEYS}];

We	can	now	query	directly	against	the	indexed	column.
GET	Customer	WHERE	city	=	'Boston';

These	indexes	are	implemented	as	bit-mapped	indexes	and	perform	well	for	low-cardinality
column	values.
10.2.4.3.	Cassandra	Query	Language	(CQL)

Cassandra	has	a	query	language	that	supports	SQL-like	commands,	known	as	Cassandra	Query
Language	(CQL).	We	can	use	the	CQL	commands	to	create	a	column	family.

Click	here	to	view	code	image

CREATE	COLUMNFAMILY	Customer	(
		KEY	varchar	PRIMARY	KEY,
		name	varchar,
		city	varchar,
		web		varchar);

We	insert	the	same	data	using	CQL.
Click	here	to	view	code	image

INSERT	INTO	Customer	(KEY,name,city,web)
		VALUES	('mfowler',
												'Martin	Fowler',
												'Boston',
												'www.martinfowler.com');

We	can	read	data	using	the	SELECT	command.	Here	we	read	all	the	columns:
SELECT	*	FROM	Customer

Or,	we	could	just	SELECT	the	columns	we	need.
SELECT	name,web	FROM	Customer

Indexing	columns	are	created	using	the	CREATE	INDEX	command,	and	then	can	be	used	to	query	the
data.
Click	here	to	view	code	image

SELECT	name,web	FROM	Customer	WHERE	city='Boston'

CQL	has	many	more	features	for	querying	data,	but	it	does	not	have	all	the	features	that	SQL	has.
CQL	does	not	allow	joins	or	subqueries,	and	its	where	clauses	are	typically	simple.

10.2.5.	Scaling
Scaling	an	existing	Cassandra	cluster	is	a	matter	of	adding	more	nodes.	As	no	single	node	is	a	master,
when	we	add	nodes	to	the	cluster	we	are	improving	the	capacity	of	the	cluster	to	support	more	writes
and	reads.	This	type	of	horizontal	scaling	allows	you	to	have	maximum	uptime,	as	the	cluster	keeps
serving	requests	from	the	clients	while	new	nodes	are	being	added	to	the	cluster.

10.3.	Suitable	Use	Cases
Let’s	discuss	some	of	the	problems	where	column-family	databases	are	a	good	fit.

10.3.1.	Event	Logging
Column-family	databases	with	their	ability	to	store	any	data	structures	are	a	great	choice	to	store
event	information,	such	as	application	state	or	errors	encountered	by	the	application.	Within	the
enterprise,	all	applications	can	write	their	events	to	Cassandra	with	their	own	columns	and	the	rowkey
of	the	form	appname:timestamp.	Since	we	can	scale	writes,	Cassandra	would	work	ideally	for	an	event
logging	system	(Figure	10.2).

Figure	10.2.	Event	logging	with	Cassandra

10.3.2.	Content	Management	Systems,	Blogging	Platforms
Using	column	families,	you	can	store	blog	entries	with	tags,	categories,	links,	and	trackbacks	in
different	columns.	Comments	can	be	either	stored	in	the	same	row	or	moved	to	a	different	keyspace;
similarly,	blog	users	and	the	actual	blogs	can	be	put	into	different	column	families.

10.3.3.	Counters
Often,	in	web	applications	you	need	to	count	and	categorize	visitors	of	a	page	to	calculate	analytics.
You	can	use	the	CounterColumnType	during	creation	of	a	column	family.
Click	here	to	view	code	image

CREATE	COLUMN	FAMILY	visit_counter
WITH	default_validation_class=CounterColumnType
AND	key_validation_class=UTF8Type	AND	comparator=UTF8Type;

Once	a	column	family	is	created,	you	can	have	arbitrary	columns	for	each	page	visited	within	the
web	application	for	every	user.
Click	here	to	view	code	image

INCR	visit_counter['mfowler'][home]	BY	1;
INCR	visit_counter['mfowler'][products]	BY	1;
INCR	visit_counter['mfowler'][contactus]	BY	1;

Incrementing	counters	using	CQL:
Click	here	to	view	code	image

UPDATE	visit_counter	SET	home	=	home	+	1	WHERE	KEY='mfowler'

10.3.4.	Expiring	Usage
You	may	provide	demo	access	to	users,	or	may	want	to	show	ad	banners	on	a	website	for	a	specific
time.	You	can	do	this	by	using	expiring	columns:	Cassandra	allows	you	to	have	columns	which,	after
a	given	time,	are	deleted	automatically.	This	time	is	known	as	TTL	(Time	To	Live)	and	is	defined	in
seconds.	The	column	is	deleted	after	the	TTL	has	elapsed;	when	the	column	does	not	exist,	the	access
can	be	revoked	or	the	banner	can	be	removed.
Click	here	to	view	code	image

SET	Customer['mfowler']['demo_access']	=	'allowed'	WITH	ttl=2592000;

10.4.	When	Not	to	Use
There	are	problems	for	which	column-family	databases	are	not	the	best	solutions,	such	as	systems
that	require	ACID	transactions	for	writes	and	reads.	If	you	need	the	database	to	aggregate	the	data
using	queries	(such	as	SUM	or	AVG),	you	have	to	do	this	on	the	client	side	using	data	retrieved	by	the
client	from	all	the	rows.
Cassandra	is	not	great	for	early	prototypes	or	initial	tech	spikes:	During	the	early	stages,	we	are

not	sure	how	the	query	patterns	may	change,	and	as	the	query	patterns	change,	we	have	to	change	the
column	family	design.	This	causes	friction	for	the	product	innovation	team	and	slows	down
developer	productivity.	RDBMS	impose	high	cost	on	schema	change,	which	is	traded	off	for	a	low
cost	of	query	change;	in	Cassandra,	the	cost	may	be	higher	for	query	change	as	compared	to	schema
change.

Chapter	11.	Graph	Databases

Graph	databases	allow	you	to	store	entities	and	relationships	between	these	entities.	Entities	are	also
known	as	nodes,	which	have	properties.	Think	of	a	node	as	an	instance	of	an	object	in	the	application.
Relations	are	known	as	edges	that	can	have	properties.	Edges	have	directional	significance;	nodes	are
organized	by	relationships	which	allow	you	to	find	interesting	patterns	between	the	nodes.	The
organization	of	the	graph	lets	the	data	to	be	stored	once	and	then	interpreted	in	different	ways	based
on	relationships.

11.1.	What	Is	a	Graph	Database?
In	the	example	graph	in	Figure	11.1,	we	see	a	bunch	of	nodes	related	to	each	other.	Nodes	are	entities
that	have	properties,	such	as	name.	The	node	of	Martin	is	actually	a	node	that	has	property	of	name	set
to	Martin.

Figure	11.1.	An	example	graph	structure
We	also	see	that	edges	have	types,	such	as	likes,	author,	and	so	on.	These	properties	let	us

organize	the	nodes;	for	example,	the	nodes	Martin	and	Pramod	have	an	edge	connecting	them	with	a
relationship	type	of	friend.	Edges	can	have	multiple	properties.	We	can	assign	a	property	of	since
on	the	friend	relationship	type	between	Martin	and	Pramod.	Relationship	types	have	directional
significance;	the	friend	relationship	type	is	bidirectional	but	likes	is	not.	When	Dawn	likes	NoSQL
Distilled,	it	does	not	automatically	mean	NoSQL	Distilled	likes	Dawn.

Once	we	have	a	graph	of	these	nodes	and	edges	created,	we	can	query	the	graph	in	many	ways,
such	as	“get	all	nodes	employed	by	Big	Co	that	like	NoSQL	Distilled.”	A	query	on	the	graph	is	also
known	as	traversing	the	graph.	An	advantage	of	the	graph	databases	is	that	we	can	change	the
traversing	requirements	without	having	to	change	the	nodes	or	edges.	If	we	want	to	“get	all	nodes	that
like	NoSQL	Distilled,”	we	can	do	so	without	having	to	change	the	existing	data	or	the	model	of	the
database,	because	we	can	traverse	the	graph	any	way	we	like.
Usually,	when	we	store	a	graph-like	structure	in	RDBMS,	it’s	for	a	single	type	of	relationship

(“who	is	my	manager”	is	a	common	example).	Adding	another	relationship	to	the	mix	usually	means
a	lot	of	schema	changes	and	data	movement,	which	is	not	the	case	when	we	are	using	graph	databases.
Similarly,	in	relational	databases	we	model	the	graph	beforehand	based	on	the	Traversal	we	want;	if
the	Traversal	changes,	the	data	will	have	to	change.
In	graph	databases,	traversing	the	joins	or	relationships	is	very	fast.	The	relationship	between

nodes	is	not	calculated	at	query	time	but	is	actually	persisted	as	a	relationship.	Traversing	persisted
relationships	is	faster	than	calculating	them	for	every	query.
Nodes	can	have	different	types	of	relationships	between	them,	allowing	you	to	both	represent

relationships	between	the	domain	entities	and	to	have	secondary	relationships	for	things	like
category,	path,	time-trees,	quad-trees	for	spatial	indexing,	or	linked	lists	for	sorted	access.	Since	there
is	no	limit	to	the	number	and	kind	of	relationships	a	node	can	have,	all	they	can	be	represented	in	the
same	graph	database.

11.2.	Features
There	are	many	graph	databases	available,	such	as	Neo4J	[Neo4J],	Infinite	Graph	[Infinite	Graph],
OrientDB	[OrientDB],	or	FlockDB	[FlockDB]	(which	is	a	special	case:	a	graph	database	that	only
supports	single-depth	relationships	or	adjacency	lists,	where	you	cannot	traverse	more	than	one	level
deep	for	relationships).	We	will	take	Neo4J	as	a	representative	of	the	graph	database	solutions	to
discuss	how	they	work	and	how	they	can	be	used	to	solve	application	problems.
In	Neo4J,	creating	a	graph	is	as	simple	as	creating	two	nodes	and	then	creating	a	relationship.	Let’s

create	two	nodes,	Martin	and	Pramod:
Click	here	to	view	code	image

Node	martin	=	graphDb.createNode();
martin.setProperty("name",	"Martin");

Node	pramod	=	graphDb.createNode();
pramod.setProperty("name",	"Pramod");

We	have	assigned	the	name	property	of	the	two	nodes	the	values	of	Martin	and	Pramod.	Once	we
have	more	than	one	node,	we	can	create	a	relationship:
Click	here	to	view	code	image

martin.createRelationshipTo(pramod,	FRIEND);

pramod.createRelationshipTo(martin,	FRIEND);

We	have	to	create	relationship	between	the	nodes	in	both	directions,	for	the	direction	of	the
relationship	matters:	For	example,	a	product	node	can	be	liked	by	user	but	the	product	cannot	like
the	user.	This	directionality	helps	in	designing	a	rich	domain	model	(Figure	11.2).	Nodes	know	about
INCOMING	and	OUTGOING	relationships	that	are	traversable	both	ways.

Figure	11.2.	Relationships	with	properties
Relationships	are	first-class	citizens	in	graph	databases;	most	of	the	value	of	graph	databases	is

derived	from	the	relationships.	Relationships	don’t	only	have	a	type,	a	start	node,	and	an	end	node,	but
can	have	properties	of	their	own.	Using	these	properties	on	the	relationships,	we	can	add	intelligence
to	the	relationship—for	example,	since	when	did	they	become	friends,	what	is	the	distance	between
the	nodes,	or	what	aspects	are	shared	between	the	nodes.	These	properties	on	the	relationships	can	be
used	to	query	the	graph.
Since	most	of	the	power	from	the	graph	databases	comes	from	the	relationships	and	their

properties,	a	lot	of	thought	and	design	work	is	needed	to	model	the	relationships	in	the	domain	that
we	are	trying	to	work	with.	Adding	new	relationship	types	is	easy;	changing	existing	nodes	and	their
relationships	is	similar	to	data	migration	(“Migrations	in	Graph	Databases,”	p.	131),	because	these
changes	will	have	to	be	done	on	each	node	and	each	relationship	in	the	existing	data.

11.2.1.	Consistency
Since	graph	databases	are	operating	on	connected	nodes,	most	graph	database	solutions	usually	do
not	support	distributing	the	nodes	on	different	servers.	There	are	some	solutions,	however,	that
support	node	distribution	across	a	cluster	of	servers,	such	as	Infinite	Graph.	Within	a	single	server,
data	is	always	consistent,	especially	in	Neo4J	which	is	fully	ACID-compliant.	When	running	Neo4J	in
a	cluster,	a	write	to	the	master	is	eventually	synchronized	to	the	slaves,	while	slaves	are	always
available	for	read.	Writes	to	slaves	are	allowed	and	are	immediately	synchronized	to	the	master;
other	slaves	will	not	be	synchronized	immediately,	though—they	will	have	to	wait	for	the	data	to
propagate	from	the	master.
Graph	databases	ensure	consistency	through	transactions.	They	do	not	allow	dangling

relationships:	The	start	node	and	end	node	always	have	to	exist,	and	nodes	can	only	be	deleted	if	they

don’t	have	any	relationships	attached	to	them.

11.2.2.	Transactions
Neo4J	is	ACID-compliant.	Before	changing	any	nodes	or	adding	any	relationships	to	existing	nodes,
we	have	to	start	a	transaction.	Without	wrapping	operations	in	transactions,	we	will	get	a
NotInTransactionException.	Read	operations	can	be	done	without	initiating	a	transaction.
Click	here	to	view	code	image

Transaction	transaction	=	database.beginTx();
try	{
				Node	node	=	database.createNode();
				node.setProperty("name",	"NoSQL	Distilled");
				node.setProperty("published",	"2012");
				transaction.success();
}	finally	{
				transaction.finish();
}

In	the	above	code,	we	started	a	transaction	on	the	database,	then	created	a	node	and	set	properties	on
it.	We	marked	the	transaction	as	success	and	finally	completed	it	by	finish.	A	transaction	has	to	be
marked	as	success,	otherwise	Neo4J	assumes	that	it	was	a	failure	and	rolls	it	back	when	finish	is
issued.	Setting	success	without	issuing	finish	also	does	not	commit	the	data	to	the	database.	This	way
of	managing	transactions	has	to	be	remembered	when	developing,	as	it	differs	from	the	standard	way
of	doing	transactions	in	an	RDBMS.

11.2.3.	Availability
Neo4J,	as	of	version	1.8,	achieves	high	availability	by	providing	for	replicated	slaves.	These	slaves
can	also	handle	writes:	When	they	are	written	to,	they	synchronize	the	write	to	the	current	master,	and
the	write	is	committed	first	at	the	master	and	then	at	the	slave.	Other	slaves	will	eventually	get	the
update.	Other	graph	databases,	such	as	Infinite	Graph	and	FlockDB,	provide	for	distributed	storage	of
the	nodes.
Neo4J	uses	the	Apache	ZooKeeper	[ZooKeeper]	to	keep	track	of	the	last	transaction	IDs	persisted

on	each	slave	node	and	the	current	master	node.	Once	a	server	starts	up,	it	communicates	with
ZooKeeper	and	finds	out	which	server	is	the	master.	If	the	server	is	the	first	one	to	join	the	cluster,	it
becomes	the	master;	when	a	master	goes	down,	the	cluster	elects	a	master	from	the	available	nodes,
thus	providing	high	availability.

11.2.4.	Query	Features
Graph	databases	are	supported	by	query	languages	such	as	Gremlin	[Gremlin].	Gremlin	is	a	domain-
specific	language	for	traversing	graphs;	it	can	traverse	all	graph	databases	that	implement	the
Blueprints	[Blueprints]	property	graph.	Neo4J	also	has	the	Cypher	[Cypher]	query	language	for
querying	the	graph.	Outside	these	query	languages,	Neo4J	allows	you	to	query	the	graph	for
properties	of	the	nodes,	traverse	the	graph,	or	navigate	the	nodes	relationships	using	language
bindings.
Properties	of	a	node	can	be	indexed	using	the	indexing	service.	Similarly,	properties	of

relationships	or	edges	can	be	indexed,	so	a	node	or	edge	can	be	found	by	the	value.	Indexes	should	be
queried	to	find	the	starting	node	to	begin	a	traversal.	Let’s	look	at	searching	for	the	node	using	node
indexing.
If	we	have	the	graph	shown	in	Figure	11.1,	we	can	index	the	nodes	as	they	are	added	to	the	database,

or	we	can	index	all	the	nodes	later	by	iterating	over	them.	We	first	need	to	create	an	index	for	the

nodes	using	the	IndexManager.
Click	here	to	view	code	image

Index<Node>	nodeIndex	=	graphDb.index().forNodes("nodes");

We	are	indexing	the	nodes	for	the	name	property.	Neo4J	uses	Lucene	[Lucene]	as	its	indexing
service.	We	will	see	later	that	we	can	also	use	the	full-text	search	capability	of	Lucene.	When	new
nodes	are	created,	they	can	be	added	to	the	index.
Click	here	to	view	code	image

Transaction	transaction	=	graphDb.beginTx();
try	{
				Index<Node>	nodeIndex	=	graphDb.index().forNodes("nodes");
				nodeIndex.add(martin,	"name",	martin.getProperty("name"));
				nodeIndex.add(pramod,	"name",	pramod.getProperty("name"));
				transaction.success();
}	finally	{
				transaction.finish();
}

Adding	nodes	to	the	index	is	done	inside	the	context	of	a	transaction.	Once	the	nodes	are	indexed,
we	can	search	them	using	the	indexed	property.	If	we	search	for	the	node	with	the	name	of	Barbara,
we	would	query	the	index	for	the	property	of	name	to	have	a	value	of	Barbara.
Click	here	to	view	code	image

Node	node	=	nodeIndex.get("name",	"Barbara").getSingle();

We	get	the	node	whose	name	is	Martin;	given	the	node,	we	can	get	all	its	relationships.
Click	here	to	view	code	image

Node	martin	=	nodeIndex.get("name",	"Martin").getSingle();
allRelationships	=	martin.getRelationships();

We	can	get	both	INCOMING	or	OUTGOING	relationships.
Click	here	to	view	code	image

incomingRelations	=	martin.getRelationships(Direction.INCOMING);

We	can	also	apply	directional	filters	on	the	queries	when	querying	for	a	relationship.	With	the
graph	in	Figure	11.1,	if	we	want	to	find	all	people	who	like	NoSQL	Distilled,	we	can	find	the	NoSQL
Distilled	node	and	then	get	its	relationships	with	Direction.INCOMING.	At	this	point	we	can	also	add
the	type	of	relationship	to	the	query	filter,	since	we	are	looking	only	for	nodes	that	LIKE	NoSQL
Distilled.
Click	here	to	view	code	image

Node	nosqlDistilled	=	nodeIndex.get("name",
																												"NoSQL	Distilled").getSingle();
relationships	=	nosqlDistilled.getRelationships(INCOMING,	LIKES);
for	(Relationship	relationship	:	relationships)	{
likesNoSQLDistilled.add(relationship.getStartNode());
}

Finding	nodes	and	their	immediate	relations	is	easy,	but	this	can	also	be	achieved	in	RDBMS
databases.	Graph	databases	are	really	powerful	when	you	want	to	traverse	the	graphs	at	any	depth	and
specify	a	starting	node	for	the	traversal.	This	is	especially	useful	when	you	are	trying	to	find	nodes
that	are	related	to	the	starting	node	at	more	than	one	level	down.	As	the	depth	of	the	graph	increases,	it
makes	more	sense	to	traverse	the	relationships	by	using	a	Traverser	where	you	can	specify	that	you

are	looking	for	INCOMING,	OUTGOING,	or	BOTH	types	of	relationships.	You	can	also	make	the	traverser
go	top-down	or	sideways	on	the	graph	by	using	Order	values	of	BREADTH_FIRST	or	DEPTH_FIRST.
The	traversal	has	to	start	at	some	node—in	this	example,	we	try	to	find	all	the	nodes	at	any	depth	that
are	related	as	a	FRIEND	with	Barbara:
Click	here	to	view	code	image

Node	barbara	=	nodeIndex.get("name",	"Barbara").getSingle();

Traverser	friendsTraverser	=	barbara.traverse(Order.BREADTH_FIRST,
				StopEvaluator.END_OF_GRAPH,
				ReturnableEvaluator.ALL_BUT_START_NODE,
				EdgeType.FRIEND,
				Direction.OUTGOING);

The	friendsTraverser	provides	us	a	way	to	find	all	the	nodes	that	are	related	to	Barbara	where	the
relationship	type	is	FRIEND.	The	nodes	can	be	at	any	depth—friend	of	a	friend	at	any	level—allowing
you	to	explore	tree	structures.
One	of	the	good	features	of	graph	databases	is	finding	paths	between	two	nodes—determining	if

there	are	multiple	paths,	finding	all	of	the	paths	or	the	shortest	path.	In	the	graph	in	Figure	11.1,	we
know	that	Barbara	is	connected	to	Jill	by	two	distinct	paths;	to	find	all	these	paths	and	the	distance
between	Barbara	and	Jill	along	those	different	paths,	we	can	use
Click	here	to	view	code	image

Node	barbara	=	nodeIndex.get("name",	"Barbara").getSingle();
Node	jill	=	nodeIndex.get("name",	"Jill").getSingle();
PathFinder<Path>	finder	=	GraphAlgoFactory.allPaths(
								Traversal.expanderForTypes(FRIEND,Direction.OUTGOING)
																																		,MAX_DEPTH);
Iterable<Path>	paths	=	finder.findAllPaths(barbara,	jill);

This	feature	is	used	in	social	networks	to	show	relationships	between	any	two	nodes.	To	find	all	the
paths	and	the	distance	between	the	nodes	for	each	path,	we	first	get	a	list	of	distinct	paths	between	the
two	nodes.	The	length	of	each	path	is	the	number	of	hops	on	the	graph	needed	to	reach	the	destination
node	from	the	start	node.	Often,	you	need	to	get	the	shortest	path	between	two	nodes;	of	the	two	paths
from	Barbara	to	Jill,	the	shortest	path	can	be	found	by	using
Click	here	to	view	code	image

PathFinder<Path>	finder	=	GraphAlgoFactory.shortestPath(
								Traversal.expanderForTypes(FRIEND,	Direction.OUTGOING)
																																			,	MAX_DEPTH);
Iterable<Path>	paths	=	finder.findAllPaths(barbara,	jill);

Many	other	graph	algorithms	can	be	applied	to	the	graph	at	hand,	such	as	Dijkstra’s	algorithm
[Dijkstra’s]	for	finding	the	shortest	or	cheapest	path	between	nodes.
Click	here	to	view	code	image

START	beginingNode	=	(beginning	node	specification)
MATCH	(relationship,	pattern	matches)
WHERE	(filtering	condition:	on	data	in	nodes	and	relationships)
RETURN	(What	to	return:	nodes,	relationships,	properties)
ORDER	BY	(properties	to	order	by)
SKIP	(nodes	to	skip	from	top)
LIMIT	(limit	results)

Neo4J	also	provides	the	Cypher	query	language	to	query	the	graph.	Cypher	needs	a	node	to	START
the	query.	The	start	node	can	be	identified	by	its	node	ID,	a	list	of	node	IDs,	or	index	lookups.	Cypher

uses	the	MATCH	keyword	for	matching	patterns	in	relationships;	the	WHERE	keyword	filters	the
properties	on	a	node	or	relationship.	The	RETURN	keyword	specifies	what	gets	returned	by	the	query—
nodes,	relationships,	or	fields	on	the	nodes	or	relationships.
Cypher	also	provides	methods	to	ORDER,	AGGREGATE,	SKIP,	and	LIMIT	the	data.	In	Figure	11.2,	we

find	all	nodes	connected	to	Barbara,	either	incoming	or	outgoing,	by	using	the	--.
Click	here	to	view	code	image

START	barbara	=	node:nodeIndex(name	=	"Barbara")
MATCH	(barbara)--(connected_node)
RETURN	connected_node

When	interested	in	directional	significance,	we	can	use
MATCH	(barbara)<--(connected_node)

for	incoming	relationships	or
MATCH	(barbara)-->(connected_node)

for	outgoing	relationships.	Match	can	also	be	done	on	specific	relationships	using	the
:RELATIONSHIP_TYPE	convention	and	returning	the	required	fields	or	nodes.
Click	here	to	view	code	image

START	barbara	=	node:nodeIndex(name	=	"Barbara")
MATCH	(barbara)-[:FRIEND]->(friend_node)
RETURN	friend_node.name,friend_node.location

We	start	with	Barbara,	find	all	outgoing	relationships	with	the	type	of	FRIEND,	and	return	the
friends’	names.	The	relationship	type	query	only	works	for	the	depth	of	one	level;	we	can	make	it
work	for	greater	depths	and	find	out	the	depth	of	each	of	the	result	nodes.
Click	here	to	view	code	image

START	barbara=node:nodeIndex(name	=	"Barbara")
MATCH	path	=	barbara-[:FRIEND*1..3]->end_node
RETURN	barbara.name,end_node.name,	length(path)

Similarly,	we	can	query	for	relationships	where	a	particular	relationship	property	exists.	We	can
also	filter	on	the	properties	of	relationships	and	query	if	a	property	exists	or	not.
Click	here	to	view	code	image

START	barbara	=	node:nodeIndex(name	=	"Barbara")
MATCH	(barbara)-[relation]->(related_node)
WHERE	type(relation)	=	'FRIEND'	AND	relation.share
RETURN	related_node.name,	relation.since

There	are	many	other	query	features	in	the	Cypher	language	that	can	be	used	to	query	database
graphs.

11.2.5.	Scaling
In	NoSQL	databases,	one	of	the	commonly	used	scaling	techniques	is	sharding,	where	data	is	split	and
distributed	across	different	servers.	With	graph	databases,	sharding	is	difficult,	as	graph	databases	are
not	aggregate-oriented	but	relationship-oriented.	Since	any	given	node	can	be	related	to	any	other
node,	storing	related	nodes	on	the	same	server	is	better	for	graph	traversal.	Traversing	a	graph	when
the	nodes	are	on	different	machines	is	not	good	for	performance.	Knowing	this	limitation	of	the
graph	databases,	we	can	still	scale	them	using	some	common	techniques	described	by	Jim	Webber

[Webber	Neo4J	Scaling].
Generally	speaking,	there	are	three	ways	to	scale	graph	databases.	Since	machines	now	can	come

with	lots	of	RAM,	we	can	add	enough	RAM	to	the	server	so	that	the	working	set	of	nodes	and
relationships	is	held	entirely	in	memory.	This	technique	is	only	helpful	if	the	dataset	that	we	are
working	with	will	fit	in	a	realistic	amount	of	RAM.
We	can	improve	the	read	scaling	of	the	database	by	adding	more	slaves	with	read-only	access	to	the

data,	with	all	the	writes	going	to	the	master.	This	pattern	of	writing	once	and	reading	from	many
servers	is	a	proven	technique	in	MySQL	clusters	and	is	really	useful	when	the	dataset	is	large	enough
to	not	fit	in	a	single	machine’s	RAM,	but	small	enough	to	be	replicated	across	multiple	machines.
Slaves	can	also	contribute	to	availability	and	read-scaling,	as	they	can	be	configured	to	never	become
a	master,	remaining	always	read-only.
When	the	dataset	size	makes	replication	impractical,	we	can	shard	(see	the	“Sharding”	section	on	p.

38)	the	data	from	the	application	side	using	domain-specific	knowledge.	For	example,	nodes	that
relate	to	the	North	America	can	be	created	on	one	server	while	the	nodes	that	relate	to	Asia	on
another.	This	application-level	sharding	needs	to	understand	that	nodes	are	stored	on	physically
different	databases	(Figure	11.3).

Figure	11.3.	Application-level	sharding	of	nodes

11.3.	Suitable	Use	Cases
Let’s	look	at	some	suitable	use	cases	for	graph	databases.

11.3.1.	Connected	Data
Social	networks	are	where	graph	databases	can	be	deployed	and	used	very	effectively.	These	social
graphs	don’t	have	to	be	only	of	the	friend	kind;	for	example,	they	can	represent	employees,	their
knowledge,	and	where	they	worked	with	other	employees	on	different	projects.	Any	link-rich	domain
is	well	suited	for	graph	databases.
If	you	have	relationships	between	domain	entities	from	different	domains	(such	as	social,	spatial,

commerce)	in	a	single	database,	you	can	make	these	relationships	more	valuable	by	providing	the

ability	to	traverse	across	domains.

11.3.2.	Routing,	Dispatch,	and	Location-Based	Services
Every	location	or	address	that	has	a	delivery	is	a	node,	and	all	the	nodes	where	the	delivery	has	to	be
made	by	the	delivery	person	can	be	modeled	as	a	graph	of	nodes.	Relationships	between	nodes	can
have	the	property	of	distance,	thus	allowing	you	to	deliver	the	goods	in	an	efficient	manner.	Distance
and	location	properties	can	also	be	used	in	graphs	of	places	of	interest,	so	that	your	application	can
provide	recommendations	of	good	restaurants	or	entertainment	options	nearby.	You	can	also	create
nodes	for	your	points	of	sales,	such	as	bookstores	or	restaurants,	and	notify	the	users	when	they	are
close	to	any	of	the	nodes	to	provide	location-based	services.

11.3.3.	Recommendation	Engines
As	nodes	and	relationships	are	created	in	the	system,	they	can	be	used	to	make	recommendations	like
“your	friends	also	bought	this	product”	or	“when	invoicing	this	item,	these	other	items	are	usually
invoiced.”	Or,	it	can	be	used	to	make	recommendations	to	travelers	mentioning	that	when	other
visitors	come	to	Barcelona	they	usually	visit	Antonio	Gaudi’s	creations.
An	interesting	side	effect	of	using	the	graph	databases	for	recommendations	is	that	as	the	data	size

grows,	the	number	of	nodes	and	relationships	available	to	make	the	recommendations	quickly
increases.	The	same	data	can	also	be	used	to	mine	information—for	example,	which	products	are
always	bought	together,	or	which	items	are	always	invoiced	together;	alerts	can	be	raised	when	these
conditions	are	not	met.	Like	other	recommendation	engines,	graph	databases	can	be	used	to	search
for	patterns	in	relationships	to	detect	fraud	in	transactions.

11.4.	When	Not	to	Use
In	some	situations,	graph	databases	may	not	appropriate.	When	you	want	to	update	all	or	a	subset	of
entities—for	example,	in	an	analytics	solution	where	all	entities	may	need	to	be	updated	with	a
changed	property—graph	databases	may	not	be	optimal	since	changing	a	property	on	all	the	nodes	is
not	a	straightforward	operation.	Even	if	the	data	model	works	for	the	problem	domain,	some
databases	may	be	unable	to	handle	lots	of	data,	especially	in	global	graph	operations	(those	involving
the	whole	graph).

Chapter	12.	Schema	Migrations

12.1.	Schema	Changes
The	recent	trend	in	discussing	NoSQL	databases	is	to	highlight	their	schemaless	nature—it	is	a
popular	feature	that	allows	developers	to	concentrate	on	the	domain	design	without	worrying	about
schema	changes.	It’s	especially	true	with	the	rise	of	agile	methods	[Agile	Methods]	where	responding
to	changing	requirements	is	important.
Discussions,	iterations,	and	feedback	loops	involving	domain	experts	and	product	owners	are

important	to	derive	the	right	understanding	of	the	data;	these	discussions	must	not	be	hampered	by	a
database’s	schema	complexity.	With	NoSQL	data	stores,	changes	to	the	schema	can	be	made	with	the
least	amount	of	friction,	improving	developer	productivity	(“The	Emergence	of	NoSQL,”	p.	9).	We
have	seen	that	developing	and	maintaining	an	application	in	the	brave	new	world	of	schemaless
databases	requires	careful	attention	to	be	given	to	schema	migration.

12.2.	Schema	Changes	in	RDBMS
While	developing	with	standard	RDBMS	technologies,	we	develop	objects,	their	corresponding
tables,	and	their	relationships.	Consider	a	simple	object	model	and	data	model	that	has	Customer,
Order,	and	OrderItems.	The	ER	model	would	look	like	Figure	12.1.

Figure	12.1.	Data	model	of	an	e-commerce	system
While	this	data	model	supports	the	current	object	model,	life	is	good.	The	first	time	there	is	a

change	in	the	object	model,	such	as	introducing	preferredShippingType	on	the	Customer	object,	we
have	to	change	the	object	and	change	the	database	table,	because	without	changing	the	table	the
application	will	be	out	of	sync	with	the	database.	When	we	get	errors	like	ORA-00942:	table	or
view	does	not	exist	or	ORA-00904:	"PREFERRED_SHIPPING_TYPE":	invalid	identifier,	we
know	we	have	this	problem.
Typically,	a	database	schema	migration	has	been	a	project	in	itself.	For	deployment	of	the	schema

changes,	database	change	scripts	are	developed,	using	diff	techniques,	for	all	the	changes	in	the
development	database.	This	approach	of	creating	migration	scripts	during	the	deployment/release
time	is	error-prone	and	does	not	support	agile	development	methods.

12.2.1.	Migrations	for	Green	Field	Projects
Scripting	the	database	schema	changes	during	development	is	better,	since	we	can	store	these	schema
changes	along	with	the	data	migration	scripts	in	the	same	script	file.	These	script	files	should	be
named	with	incrementing	sequential	numbers	which	reflect	the	database	versions;	for	example,	the

first	change	to	the	database	could	have	script	file	named	as	001_Description_Of_Change.sql.
Scripting	changes	this	way	allows	for	the	database	migrations	to	be	run	preserving	the	order	of
changes.	Shown	in	Figure	12.2	is	a	folder	of	all	the	changes	done	to	a	database	so	far.

Figure	12.2.	Sequence	of	migrations	applied	to	a	database
Now,	suppose	we	need	to	change	the	OrderItem	table	to	store	the	DiscountedPrice	and	the

FullPrice	of	the	item.	This	will	need	a	change	to	the	OrderItem	table	and	will	be	change	number	007
in	our	sequence	of	changes,	as	shown	in	Figure	12.3.

Figure	12.3.	New	change	007_DiscountedPrice.sql	applied	to	the	database
We	applied	a	new	change	to	the	database.	This	change’s	script	has	the	code	for	adding	a	new

column,	renaming	the	existing	column,	and	migrating	the	data	needed	to	make	the	new	feature	work.
Shown	below	is	the	script	contained	in	the	change	007_DiscountedPrice.sql:
Click	here	to	view	code	image

ALTER	TABLE	orderitem	ADD	discountedprice	NUMBER(18,2)	NULL;
UPDATE	orderitem	SET	discountedprice	=	price;
ALTER	TABLE	orderitem	MODIFY	discountedprice	NOT	NULL;
ALTER	TABLE	orderitem	RENAME	COLUMN	price	TO	fullprice;
--//@UNDO
ALTER	TABLE	orderitem	RENAME	fullprice	TO	price;
ALTER	TABLE	orderitem	DROP	COLUMN	discountedprice;

The	change	script	shows	the	schema	changes	to	the	database	as	well	as	the	data	migrations	needed
to	be	done.	In	the	example	shown,	we	are	using	DBDeploy	[DBDeploy]	as	the	framework	to	manage
the	changes	to	the	database.	DBDeploy	maintains	a	table	in	the	database,	named	ChangeLog,	where	all
the	changes	made	to	the	database	are	stored.	In	this	table,	Change_Number	is	what	tells	everyone	which
changes	have	been	applied	to	the	database.	This	Change_Number,	which	is	the	database	version,	is	then
used	to	find	the	corresponding	numbered	script	in	the	folder	and	apply	the	changes	which	have	not
been	applied	yet.	When	we	write	a	script	with	the	change	number	007	and	apply	it	to	the	database
using	DBDeploy,	DBDeploy	will	check	the	ChangeLog	and	pick	up	all	the	scripts	from	the	folder	that
have	not	yet	been	applied.	Figure	12.4	is	the	screenshot	of	DBDeploy	applying	the	change	to	the

database.

Figure	12.4.	DBDeploy	upgrading	the	database	with	change	number	007
The	best	way	to	integrate	with	the	rest	of	the	developers	is	to	use	your	project’s	version	control

repository	to	store	all	these	change	scripts,	so	that	you	can	keep	track	of	the	version	of	the	software
and	the	database	in	the	same	place,	eliminating	possible	mismatches	between	the	database	and	the
application.	There	are	many	other	tools	for	such	upgrades,	including	Liquibase	[Liquibase],	MyBatis
Migrator	[MyBatis	Migrator],	DBMaintain	[DBMaintain].

12.2.2.	Migrations	in	Legacy	Projects
Not	every	project	is	a	green	field.	How	to	implement	migrations	when	an	existing	application	is	in
production?	We	found	that	taking	an	existing	database	and	extracting	its	structure	into	scripts,	along
with	all	the	database	code	and	any	reference	data,	works	as	a	baseline	for	the	project.	This	baseline
should	not	contain	transactional	data.	Once	the	baseline	is	ready,	further	changes	can	be	done	using
the	migrations	technique	described	above	(Figure	12.5).

Figure	12.5.	Use	of	baseline	scripts	with	a	legacy	database
One	of	the	main	aspects	of	migrations	should	be	maintaining	backward	compatibility	of	the

database	schema.	In	many	enterprises	there	are	multiple	applications	using	the	database;	when	we
change	the	database	for	one	application,	this	change	should	not	break	other	applications.	We	can
achieve	backward	compatibility	by	maintaining	a	transition	phase	for	the	change,	as	described	in
detail	in	Refactoring	Databases	[Ambler	and	Sadalage].
During	a	transition	phase,	the	old	schema	and	the	new	schema	are	maintained	in	parallel	and	are

available	for	all	the	applications	using	the	database.	For	this,	we	have	to	introduce	scaffolding	code,
such	as	triggers,	views,	and	virtual	columns	ensuring	other	applications	can	access	the	database
schema	and	the	data	they	require	without	any	code	changes.
Click	here	to	view	code	image

ALTER	TABLE	customer	ADD	fullname	VARCHAR2(60);
UPDATE	customer	SET	fullname	=	fname;

CREATE	OR	REPLACE	TRIGGER	SyncCustomerFullName
BEFORE	INSERT	OR	UPDATE
ON	customer
REFERENCING	OLD	AS	OLD	NEW	AS	NEW
FOR	EACH	ROW
BEGIN
		IF	:NEW.fname	IS	NULL	THEN
				:NEW.fname	:=	:NEW.fullname;
		END	IF;
		IF	:NEW.fullname	IS	NULL	THEN
				:NEW.fullname	:=	:NEW.fname
		END	IF;
END;
/

--Drop	Trigger	and	fname
--when	all	applications	start	using	customer.fullname

In	the	example,	we	are	trying	to	rename	the	customer.fname	column	to	customer.fullname	as	we
want	to	avoid	any	ambiguity	of	fname	meaning	either	fullname	or	firstname.	A	direct	rename	of	the
fname	column	and	changing	the	application	code	we	are	responsible	for	may	just	work,	for	our
application—but	will	not	for	the	other	applications	in	the	enterprise	that	are	accessing	the	same
database.
Using	the	transition	phase	technique,	we	introduce	the	new	column	fullname,	copy	the	data	over	to

fullname,	but	leave	the	old	column	fname	around.	We	also	introduce	a	BEFORE	UPDATE	trigger	to
synchronize	data	between	the	columns	before	they	are	committed	to	the	database.
Now,	when	applications	read	data	from	the	table,	they	will	read	either	from	fname	or	from

fullname	but	will	always	get	the	right	data.	We	can	drop	the	trigger	and	the	fname	column	once	all	the
applications	have	moved	on	to	using	the	new	fullname	column.
It’s	very	hard	to	do	schema	migrations	on	large	datasets	in	RDBMS,	especially	if	we	have	to	keep

the	database	available	to	the	applications,	as	large	data	movements	and	structural	changes	usually
create	locks	on	the	database	tables.

12.3.	Schema	Changes	in	a	NoSQL	Data	Store
An	RDBMS	database	has	to	be	changed	before	the	application	is	changed.	This	is	what	the	schema-
free,	or	schemaless,	approach	tries	to	avoid,	aiming	at	flexibility	of	schema	changes	per	entity.

Frequent	changes	to	the	schema	are	needed	to	react	to	frequent	market	changes	and	product
innovations.
When	developing	with	NoSQL	databases,	in	some	cases	the	schema	does	not	have	to	be	thought

about	beforehand.	We	still	have	to	design	and	think	about	other	aspects,	such	as	the	types	of
relationships	(with	graph	databases),	or	the	names	of	the	column	families,	rows,	columns,	order	of
columns	(with	column	databases),	or	how	are	the	keys	assigned	and	what	is	the	structure	of	the	data
inside	the	value	object	(with	key-value	stores).	Even	if	we	didn’t	think	about	these	up	front,	or	if	we
want	to	change	our	decisions,	it	is	easy	to	do	so.
The	claim	that	NoSQL	databases	are	entirely	schemaless	is	misleading;	while	they	store	the	data

without	regard	to	the	schema	the	data	adheres	to,	that	schema	has	to	be	defined	by	the	application,
because	the	data	stream	has	to	be	parsed	by	the	application	when	reading	the	data	from	the	database.
Also,	the	application	has	to	create	the	data	that	would	be	saved	in	the	database.	If	the	application
cannot	parse	the	data	from	the	database,	we	have	a	schema	mismatch	even	if,	instead	of	the	RDBMS
database	throwing	a	error,	this	error	is	now	encountered	by	the	application.	Thus,	even	in	schemaless
databases,	the	schema	of	the	data	has	to	be	taken	into	consideration	when	refactoring	the	application.
Schema	changes	especially	matter	when	there	is	a	deployed	application	and	existing	production

data.	For	the	sake	of	simplicity,	assume	we	are	using	a	document	data	store	like	MongoDB
[MongoDB]	and	we	have	the	same	data	model	as	before:	customer,	order,	and	orderItems.
Click	here	to	view	code	image

{
"_id":	"4BD8AE97C47016442AF4A580",
"customerid":	99999,
"name":	"Foo	Sushi	Inc",
"since":	"12/12/2012",
"order":	{
				"orderid":	"4821-UXWE-122012","orderdate":	"12/12/2001",
				"orderItems":	[{"product":	"Fortune	Cookies",
																				"price":	19.99}]
				}
}

Application	code	to	write	this	document	structure	to	MongoDB:
Click	here	to	view	code	image

BasicDBObject	orderItem	=	new	BasicDBObject();
orderItem.put("product",	productName);
orderItem.put("price",	price);
orderItems.add(orderItem);

Code	to	read	the	document	back	from	the	database:
Click	here	to	view	code	image

BasicDBObject	item	=	(BasicDBObject)	orderItem;
String	productName	=	item.getString("product");
Double	price	=	item.getDouble("price");

Changing	the	objects	to	add	preferredShippingType	does	not	require	any	change	in	the	database,
as	the	database	does	not	care	that	different	documents	do	not	follow	the	same	schema.	This	allows	for
faster	development	and	easy	deployments.	All	that	needs	to	be	deployed	is	the	application—no
changes	on	the	database	side	are	needed.	The	code	has	to	make	sure	that	documents	that	do	not	have
the	preferredShippingType	attribute	can	still	be	parsed—and	that’s	all.
Of	course	we	are	simplifying	the	schema	change	situation	here.	Let’s	look	at	the	schema	change	we

made	before:	introducing	discountedPrice	and	renaming	price	to	fullPrice.	To	make	this	change,
we	rename	the	price	attribute	to	fullPrice	and	add	discountedPrice	attribute.	The	changed
document	is
Click	here	to	view	code	image

{
"_id":	"5BD8AE97C47016442AF4A580",
"customerid":	66778,
"name":	"India	House",
"since":	"12/12/2012",
"order":	{
		"orderid":	"4821-UXWE-222012",
				"orderdate":	"12/12/2001",
				"orderItems":	[{"product":	"Chair	Covers",
																				"fullPrice":	29.99,
																				"discountedPrice":26.99}]
				}
}

Once	we	deploy	this	change,	new	customers	and	their	orders	can	be	saved	and	read	back	without
problems,	but	for	existing	orders	the	price	of	their	product	cannot	be	read,	because	now	the	code	is
looking	for	fullPrice	but	the	document	has	only	price.

12.3.1.	Incremental	Migration
Schema	mismatch	trips	many	new	converts	to	the	NoSQL	world.	When	schema	is	changed	on	the
application,	we	have	to	make	sure	to	convert	all	the	existing	data	to	the	new	schema	(depending	on
data	size,	this	might	be	an	expensive	operation).	Another	option	would	be	to	make	sure	that	data,
before	the	schema	changed,	can	still	be	parsed	by	the	new	code,	and	when	it’s	saved,	it	is	saved	back
in	the	new	schema.	This	technique,	known	as	incremental	migration,	will	migrate	data	over	time;
some	data	may	never	get	migrated,	because	it	was	never	accessed.	We	are	reading	both	price	and
fullPrice	from	the	document:
Click	here	to	view	code	image

BasicDBObject	item	=	(BasicDBObject)	orderItem;
String	productName	=	item.getString("product");
Double	fullPrice	=	item.getDouble("price");
if	(fullPrice	==	null)	{
				fullPrice	=	item.getDouble("fullPrice");
}
Double	discountedPrice	=	item.getDouble("discountedPrice");

When	writing	the	document	back,	the	old	attribute	price	is	not	saved:
Click	here	to	view	code	image

BasicDBObject	orderItem	=	new	BasicDBObject();
orderItem.put("product",	productName);
orderItem.put("fullPrice",	price);
orderItem.put("discountedPrice",	discountedPrice);
orderItems.add(orderItem);

When	using	incremental	migration,	there	could	be	many	versions	of	the	object	on	the	application
side	that	can	translate	the	old	schema	to	the	new	schema;	while	saving	the	object	back,	it	is	saved
using	the	new	object.	This	gradual	migration	of	the	data	helps	the	application	evolve	faster.
The	incremental	migration	technique	will	complicate	the	object	design,	especially	as	new	changes

are	being	introduced	yet	old	changes	are	not	being	taken	out.	This	period	between	the	change

deployment	and	the	last	object	in	the	database	migrating	to	the	new	schema	is	known	as	the	transition
period	(Figure	12.6).	Keep	it	as	short	as	possible	and	focus	it	to	the	minimum	possible	scope—this
will	help	you	keep	your	objects	clean.

Figure	12.6.	Transition	period	of	schema	changes
The	incremental	migration	technique	can	also	be	implemented	with	a	schema_version	field	on	the

data,	used	by	the	application	to	choose	the	correct	code	to	parse	the	data	into	the	objects.	When
saving,	the	data	is	migrated	to	the	latest	version	and	the	schema_version	is	updated	to	reflect	that.
Having	a	proper	translation	layer	between	your	domain	and	the	database	is	important	so	that,	as	the

schema	changes,	managing	multiple	versions	of	the	schema	is	restricted	to	the	translation	layer	and
does	not	leak	into	the	whole	application.
Mobile	apps	create	special	requirements.	Since	we	cannot	enforce	the	latest	upgrades	of	the

application,	the	application	should	be	able	to	handle	almost	all	versions	of	the	schema.

12.3.2.	Migrations	in	Graph	Databases
Graph	databases	have	edges	that	have	types	and	properties.	If	you	change	the	type	of	these	edges	in
the	codebase,	you	no	longer	can	traverse	the	database,	rendering	it	unusable.	To	get	around	this,	you
can	traverse	all	the	edges	and	change	the	type	of	each	edge.	This	operation	can	be	expensive	and
requires	you	to	write	code	to	migrate	all	the	edges	in	the	database.
If	we	need	to	maintain	backward	compatibility	or	do	not	want	to	change	the	whole	graph	in	one	go,

we	can	just	create	new	edges	between	the	nodes;	later	when	we	are	comfortable	about	the	change,	the
old	edges	can	be	dropped.	We	can	use	traversals	with	multiple	edge	types	to	traverse	the	graph	using
the	new	and	old	edge	types.	This	technique	may	help	a	great	deal	with	large	databases,	especially	if	we
want	to	maintain	high	availability.
If	we	have	to	change	properties	on	all	the	nodes	or	edges,	we	have	to	fetch	all	the	nodes	and	change

all	the	properties	that	need	to	be	changed.	An	example	would	be	adding	NodeCreatedBy	and
NodeCreatedOn	to	all	existing	nodes	to	track	the	changes	being	made	to	each	node.
Click	here	to	view	code	image

for	(Node	node	:	database.getAllNodes())	{
				node.setProperty("NodeCreatedBy",	getSystemUser());
				node.setProperty("NodeCreatedOn",	getSystemTimeStamp());

}

We	may	have	to	change	the	data	in	the	nodes.	New	data	may	be	derived	from	the	existing	node	data,
or	it	could	be	imported	from	some	other	source.	The	migration	can	be	done	by	fetching	all	nodes
using	an	index	provided	by	the	source	of	data	and	writing	relevant	data	to	each	node.

12.3.3.	Changing	Aggregate	Structure
Sometimes	you	need	to	change	the	schema	design,	for	example	by	splitting	large	objects	into	smaller
ones	that	are	stored	independently.	Suppose	you	have	a	customer	aggregate	that	contains	all	the
customers	orders,	and	you	want	to	separate	the	customer	and	each	of	their	orders	into	different
aggregate	units.
You	then	have	to	ensure	that	the	code	can	work	with	both	versions	of	the	aggregates.	If	it	does	not

find	the	old	objects,	it	will	look	for	the	new	aggregates.
Code	that	runs	in	the	background	can	read	one	aggregate	at	a	time,	make	the	necessary	change,	and

save	the	data	back	into	different	aggregates.	The	advantage	of	operating	on	one	aggregate	at	a	time	is
that	this	way,	you’re	not	affecting	data	availability	for	the	application.

12.4.	Further	Reading
For	more	on	migrations	with	relational	databases,	see	[Ambler	and	Sadalage].	Although	much	of	this
content	is	specific	to	relational	work,	the	general	principles	in	migration	will	also	apply	to	other
databases.

12.5.	Key	Points
•	Databases	with	strong	schemas,	such	as	relational	databases,	can	be	migrated	by	saving	each
schema	change,	plus	its	data	migration,	in	a	version-controlled	sequence.

•	Schemaless	databases	still	need	careful	migration	due	to	the	implicit	schema	in	any	code	that
accesses	the	data.

•	Schemaless	databases	can	use	the	same	migration	techniques	as	databases	with	strong	schemas.
•	Schemaless	databases	can	also	read	data	in	a	way	that’s	tolerant	to	changes	in	the	data’s	implicit
schema	and	use	incremental	migration	to	update	data.

Chapter	13.	Polyglot	Persistence

Different	databases	are	designed	to	solve	different	problems.	Using	a	single	database	engine	for	all
of	the	requirements	usually	leads	to	non-	performant	solutions;	storing	transactional	data,	caching
session	information,	traversing	graph	of	customers	and	the	products	their	friends	bought	are
essentially	different	problems.	Even	in	the	RDBMS	space,	the	requirements	of	an	OLAP	and	OLTP
system	are	very	different—nonetheless,	they	are	often	forced	into	the	same	schema.
Let’s	think	of	data	relationships.	RDBMS	solutions	are	good	at	enforcing	that	relationships	exist.	If

we	want	to	discover	relationships,	or	have	to	find	data	from	different	tables	that	belong	to	the	same
object,	then	the	use	of	RDBMS	starts	being	difficult.
Database	engines	are	designed	to	perform	certain	operations	on	certain	data	structures	and	data

amounts	very	well—such	as	operating	on	sets	of	data	or	a	store	and	retrieving	keys	and	their	values
really	fast,	or	storing	rich	documents	or	complex	graphs	of	information.

13.1.	Disparate	Data	Storage	Needs
Many	enterprises	tend	to	use	the	same	database	engine	to	store	business	transactions,	session
management	data,	and	for	other	storage	needs	such	as	reporting,	BI,	data	warehousing,	or	logging
information	(Figure	13.1).

Figure	13.1.	Use	of	RDBMS	for	every	aspect	of	storage	for	the	application
The	session,	shopping	cart,	or	order	data	do	not	need	the	same	properties	of	availability,

consistency,	or	backup	requirements.	Does	session	management	storage	need	the	same	rigorous
backup/recovery	strategy	as	the	e-commerce	orders	data?	Does	the	session	management	storage	need
more	availability	of	an	instance	of	database	engine	to	write/read	session	data?
In	2006,	Neal	Ford	coined	the	term	polyglot	programming,	to	express	the	idea	that	applications

should	be	written	in	a	mix	of	languages	to	take	advantage	of	the	fact	that	different	languages	are
suitable	for	tackling	different	problems.	Complex	applications	combine	different	types	of	problems,
so	picking	the	right	language	for	each	job	may	be	more	productive	than	trying	to	fit	all	aspects	into	a
single	language.

Similarly,	when	working	on	an	e-commerce	business	problem,	using	a	data	store	for	the	shopping
cart	which	is	highly	available	and	can	scale	is	important,	but	the	same	data	store	cannot	help	you	find
products	bought	by	the	customers’	friends—which	is	a	totally	different	question.	We	use	the	term
polyglot	persistence	to	define	this	hybrid	approach	to	persistence.

13.2.	Polyglot	Data	Store	Usage
Let’s	take	our	e-commerce	example	and	use	the	polyglot	persistence	approach	to	see	how	some	of
these	data	stores	can	be	applied	(Figure	13.2).	A	key-value	data	store	could	be	used	to	store	the
shopping	cart	data	before	the	order	is	confirmed	by	the	customer	and	also	store	the	session	data	so
that	the	RDBMS	is	not	used	for	this	transient	data.	Key-value	stores	make	sense	here	since	the
shopping	cart	is	usually	accessed	by	user	ID	and,	once	confirmed	and	paid	by	the	customer,	can	be
saved	in	the	RDBMS.	Similarly,	session	data	is	keyed	by	the	session	ID.

Figure	13.2.	Use	of	key-value	stores	to	offload	session	and	shopping	cart	data	storage
If	we	need	to	recommend	products	to	customers	when	they	place	products	into	their	shopping	carts

—for	example,	“your	friends	also	bought	these	products”	or	“your	friends	bought	these	accessories
for	this	product”—then	introducing	a	graph	data	store	in	the	mix	becomes	relevant	(Figure	13.3).

Figure	13.3.	Example	implementation	of	polyglot	persistence

It	is	not	necessary	for	the	application	to	use	a	single	data	store	for	all	of	its	needs,	since	different
databases	are	built	for	different	purposes	and	not	all	problems	can	be	elegantly	solved	by	a	singe
database.
Even	using	specialized	relational	databases	for	different	purposes,	such	as	data	warehousing

appliances	or	analytics	appliances	within	the	same	application,	can	be	viewed	as	polyglot	persistence.

13.3.	Service	Usage	over	Direct	Data	Store	Usage
As	we	move	towards	multiple	data	stores	in	the	application,	there	may	be	other	applications	in	the
enterprise	that	could	benefit	from	the	use	of	our	data	stores	or	the	data	stored	in	them.	Using	our
example,	the	graph	data	store	can	serve	data	to	other	applications	that	need	to	understand,	for
example,	which	products	are	being	bought	by	a	certain	segment	of	the	customer	base.
Instead	of	each	application	talking	independently	to	the	graph	database,	we	can	wrap	the	graph

database	into	a	service	so	that	all	relationships	between	the	nodes	can	be	saved	in	one	place	and
queried	by	all	the	applications	(Figure	13.4).	The	data	ownership	and	the	APIs	provided	by	the	service
are	more	useful	than	a	single	application	talking	to	multiple	databases.

Figure	13.4.	Example	implementation	of	wrapping	data	stores	into	services
The	philosophy	of	service	wrapping	can	be	taken	further:	You	could	wrap	all	databases	into

services,	letting	the	application	to	only	talk	to	a	bunch	of	services	(Figure	13.5).	This	allows	for	the
databases	inside	the	services	to	evolve	without	you	having	to	change	the	dependent	applications.

Figure	13.5.	Using	services	instead	of	talking	to	databases
Many	NoSQL	data	store	products,	such	as	Riak	[Riak]	and	Neo4J	[Neo4J],	actually	provide	out-of-

the-box	REST	API’s.

13.4.	Expanding	for	Better	Functionality
Often,	we	cannot	really	change	the	data	storage	for	a	specific	usage	to	something	different,	because
of	the	existing	legacy	applications	and	their	dependency	on	existing	data	storage.	We	can,	however,
add	functionality	such	as	caching	for	better	performance,	or	use	indexing	engines	such	as	Solr	[Solr]
so	that	search	can	be	more	efficient	(Figure	13.6).	When	technologies	like	this	are	introduced,	we
have	to	make	sure	data	is	synchronized	between	the	data	storage	for	the	application	and	the	cache	or
indexing	engine.

Figure	13.6.	Using	supplemental	storage	to	enhance	legacy	storage
While	doing	this,	we	need	to	update	the	indexed	data	as	the	data	in	the	application	database	changes.

The	process	of	updating	the	data	can	be	real-time	or	batch,	as	long	as	we	ensure	that	the	application

can	deal	with	stale	data	in	the	index/search	engine.	The	event	sourcing	(“Event	Sourcing,”	p.	142)
pattern	can	be	used	to	update	the	index.

13.5.	Choosing	the	Right	Technology
There	is	a	rich	choice	of	data	storage	solutions.	Initially,	the	pendulum	had	shifted	from	speciality
databases	to	a	single	RDBMS	database	which	allows	all	types	of	data	models	to	be	stored,	although
with	some	abstraction.	The	trend	is	now	shifting	back	to	using	the	data	storage	that	supports	the
implementation	of	solutions	natively.
If	we	want	to	recommend	products	to	customers	based	on	what’s	in	their	shopping	carts	and	which

other	products	were	bought	by	customers	who	bought	those	products,	it	can	be	implemented	in	any	of
the	data	stores	by	persisting	the	data	with	the	correct	attributes	to	answer	our	questions.	The	trick	is	to
use	the	right	technology,	so	that	when	the	questions	change,	they	can	still	be	asked	with	the	same	data
store	without	losing	existing	data	or	changing	it	into	new	formats.
Let’s	go	back	to	our	new	feature	need.	We	can	use	RDBMS	to	solve	this	using	a	hierarchal	query

and	modeling	the	tables	accordingly.	When	we	need	to	change	the	traversal,	we	will	have	to	refactor
the	database,	migrate	the	data,	and	start	persisting	new	data.	Instead,	if	we	had	used	a	data	store	that
tracks	relations	between	nodes,	we	could	have	just	programmed	the	new	relations	and	keep	using	the
same	data	store	with	minimal	changes.

13.6.	Enterprise	Concerns	with	Polyglot	Persistence
Introduction	of	NoSQL	data	storage	technologies	will	force	the	enterprise	DBAs	to	think	about	how
to	use	the	new	storage.	The	enterprise	is	used	to	having	uniform	RDBMS	environments;	whatever	is
the	database	an	enterprise	starts	using	first,	chances	are	that	over	the	years	all	its	applications	will	be
built	around	the	same	database.	In	this	new	world	of	polyglot	persistence,	the	DBA	groups	will	have
to	become	more	poly-skilled—to	learn	how	some	of	these	NoSQL	technologies	work,	how	to
monitor	these	systems,	back	them	up,	and	take	data	out	of	and	put	into	these	systems.
Once	the	enterprise	decides	to	use	any	NoSQL	technology,	issues	such	as	licensing,	support,	tools,

upgrades,	drivers,	auditing,	and	security	come	up.	Many	NoSQL	technologies	are	open-source	and
have	an	active	community	of	supporters;	also,	there	are	companies	that	provide	commercial	support.
There	is	not	a	rich	ecosystem	of	tools,	but	the	tool	vendors	and	the	open-source	community	are
catching	up,	releasing	tools	such	as	MongoDB	Monitoring	Service	[Monitoring],	Datastax	Ops
Center	[OpsCenter],	or	Rekon	browser	for	Riak	[Rekon].
One	other	area	that	enterprises	are	concerned	about	is	security	of	the	data—the	ability	to	create

users	and	assign	privileges	to	see	or	not	see	data	at	the	database	level.	Most	of	the	NoSQL	databases
do	not	have	very	robust	security	features,	but	that’s	because	they	are	designed	to	operate	differently.
In	traditional	RDBMS,	data	was	served	by	the	database	and	we	could	get	to	the	database	using	any
query	tools.	With	the	NoSQL	databases,	there	are	query	tools	as	well	but	the	idea	is	for	the	application
to	own	the	data	and	serve	it	using	services.	With	this	approach,	the	responsibility	for	the	security	lies
with	the	application.	Having	said	that,	there	are	NoSQL	technologies	that	introduce	security	features.
Enterprises	often	have	data	warehouse	systems,	BI,	and	analytics	systems	that	may	need	data	from

the	polyglot	data	sources.	Enterprises	will	have	to	ensure	that	the	ETL	tools	or	any	other	mechanism
they	are	using	to	move	data	from	source	systems	to	the	data	warehouse	can	read	data	from	the
NoSQL	data	store.	The	ETL	tool	vendors	are	coming	out	with	have	the	ability	to	talk	to	NoSQL
databases;	for	example,	Pentaho	[Pentaho]	can	talk	to	MongoDB	and	Cassandra.
Every	enterprise	runs	analytics	of	some	sort.	As	the	sheer	volume	of	data	that	needs	to	be	captured

increases,	enterprises	are	struggling	to	scale	their	RDBMS	systems	to	write	all	this	data	to	the
databases.	A	huge	number	of	writes	and	the	need	to	scale	for	writes	are	a	great	use	case	for	NoSQL
databases	that	allow	you	to	write	large	volumes	of	data.

13.7.	Deployment	Complexity
Once	we	start	down	the	path	of	using	polyglot	persistence	in	the	application,	deployment	complexity
needs	careful	consideration.	The	application	now	needs	all	databases	in	production	at	the	same	time.
You	will	need	to	have	these	databases	in	your	UAT,	QA,	and	Dev	environments.	As	most	of	the
NoSQL	products	are	open-source,	there	are	few	license	cost	ramifications.	They	also	support
automation	of	installation	and	configuration.	For	example,	to	install	a	database,	all	that	needs	to	be
done	is	download	and	unzip	the	archive,	which	can	be	automated	using	curl	and	unzip	commands.
These	products	also	have	sensible	defaults	and	can	be	started	with	minimum	configuration.

13.8.	Key	Points
•	Polyglot	persistence	is	about	using	different	data	storage	technologies	to	handle	varying	data
storage	needs.

•	Polyglot	persistence	can	apply	across	an	enterprise	or	within	a	single	application.
•	Encapsulating	data	access	into	services	reduces	the	impact	of	data	storage	choices	on	other	parts
of	a	system.

•	Adding	more	data	storage	technologies	increases	complexity	in	programming	and	operations,
so	the	advantages	of	a	good	data	storage	fit	need	to	be	weighed	against	this	complexity.

Chapter	14.	Beyond	NoSQL

The	appearance	of	NoSQL	databases	has	done	a	great	deal	to	shake	up	and	open	up	the	world	of
databases,	but	we	think	the	kind	of	NoSQL	databases	we	have	discussed	here	is	only	part	of	the	picture
of	polyglot	persistence.	So	it	makes	sense	to	spend	some	time	discussing	solutions	that	don’t	easily	fit
into	the	NoSQL	bucket.

14.1.	File	Systems
Databases	are	very	common,	but	file	systems	are	almost	ubiquitous.	In	the	last	couple	of	decades
they’ve	been	widely	used	for	personal	productivity	documents,	but	not	for	enterprise	applications.
They	don’t	advertise	any	internal	structure,	so	they	are	more	like	key-value	stores	with	a	hierarchic
key.	They	also	provide	little	control	over	concurrency	other	than	simple	file	locking—which	itself	is
similar	to	the	way	NoSQL	only	provides	locking	within	a	single	aggregate.
File	systems	have	the	advantage	of	being	simple	and	widely	implemented.	They	cope	well	with	very

large	entities,	such	as	video	and	audio.	Often,	databases	are	used	to	index	media	assets	stored	in	files.
Files	also	work	very	well	for	sequential	access,	such	as	streaming,	which	can	be	handy	for	data	which
is	append-only.
Recent	attention	to	clustered	environments	has	seen	a	rise	of	distributed	file	systems.	Technologies

like	the	Google	File	System	and	Hadoop	[Hadoop]	provide	support	for	replication	of	files.	Much	of
the	discussion	of	map-reduce	is	about	manipulating	large	files	on	cluster	systems,	with	tools	for
automatic	splitting	of	large	files	into	segments	to	be	processed	on	multiple	nodes.	Indeed	a	common
entry	path	into	NoSQL	is	from	organizations	that	have	been	using	Hadoop.
File	systems	work	best	for	a	relatively	small	number	of	large	files	that	can	be	processed	in	big

chunks,	preferably	in	a	streaming	style.	Large	numbers	of	small	files	generally	perform	badly—this
is	where	a	data	store	becomes	more	efficient.	Files	also	provide	no	support	for	queries	without
additional	indexing	tools	such	as	Solr	[Solr].

14.2.	Event	Sourcing
Event	sourcing	is	an	approach	to	persistence	that	concentrates	on	persisting	all	the	changes	to	a
persistent	state,	rather	than	persisting	the	current	application	state	itself.	It’s	an	architectural	pattern
that	works	quite	well	with	most	persistence	technologies,	including	relational	databases.	We	mention
it	here	because	it	also	underpins	some	of	the	more	unusual	ways	of	thinking	about	persistence.
Consider	an	example	of	a	system	that	keeps	a	log	of	the	location	of	ships	(Figure	14.1).	It	has	a

simple	ship	record	that	keeps	the	name	of	the	ship	and	its	current	location.	In	the	usual	way	of
thinking,	when	we	hear	that	the	ship	King	Roy	has	arrived	in	San	Francisco,	we	change	the	value	of
King	Roy’s	location	field	to	San	Francisco.	Later	on,	we	hear	it’s	departed,	so	we	change	it	to	at
sea,	changing	it	again	once	we	know	it’s	arrived	in	Hong	Kong.

Figure	14.1.	In	a	typical	system,	notice	of	a	change	causes	an	update	to	the	application’s	state.
With	an	event-sourced	system,	the	first	step	is	to	construct	an	event	object	that	captures	the

information	about	the	change	(Figure	14.2).	This	event	object	is	stored	in	a	durable	event	log.	Finally,
we	process	the	event	in	order	to	update	the	application’s	state.

Figure	14.2.	With	event	sourcing,	the	system	stores	each	event,	together	with	the	derived
application	state.

As	a	consequence,	in	an	event-sourced	system	we	store	every	event	that’s	caused	a	state	change	of
the	system	in	the	event	log,	and	the	application’s	state	is	entirely	derivable	from	this	event	log.	At	any
time,	we	can	safely	throw	away	the	application	state	and	rebuild	it	from	the	event	log.
In	theory,	event	logs	are	all	you	need	because	you	can	always	recreate	the	application	state

whenever	you	need	it	by	replaying	the	event	log.	In	practice,	this	may	be	too	slow.	As	a	result,	it’s

usually	best	to	provide	the	ability	to	store	and	recreate	the	application	state	in	a	snapshot.	A	snapshot
is	designed	to	persist	the	memory	image	optimized	for	rapid	recovery	of	the	state.	It	is	an
optimization	aid,	so	it	should	never	take	precedence	over	the	event	log	for	authority	on	the	data.
How	frequently	you	take	a	snapshot	depends	on	your	uptime	needs.	The	snapshot	doesn’t	need	to	be

completely	up	to	date,	as	you	can	rebuild	memory	by	loading	the	latest	snapshot	and	then	replaying
all	events	processed	since	that	snapshot	was	taken.	An	example	approach	would	be	to	take	a	snapshot
every	night;	should	the	system	go	down	during	the	day,	you’d	reload	last	night’s	snapshot	followed
by	today’s	events.	If	you	can	do	that	quickly	enough,	all	will	be	fine.
To	get	a	full	record	of	every	change	in	your	application	state,	you	need	to	keep	the	event	log	going

back	to	the	beginning	of	time	for	your	application.	But	in	many	cases	such	a	long-lived	record	isn’t
necessary,	as	you	can	fold	older	events	into	a	snapshot	and	only	use	the	event	log	after	the	date	of	the
snapshot.
Using	event	sourcing	has	a	number	of	advantages.	You	can	broadcast	events	to	multiple	systems,

each	of	which	can	build	a	different	application	state	for	different	purposes	(Figure	14.3).	For	read-
intensive	systems,	you	can	provide	multiple	read	nodes,	with	potentially	different	schemas,	while
concentrating	the	writes	on	a	different	processing	system	(an	approach	broadly	known	as	CQRS
[CQRS]).

Figure	14.3.	Events	can	be	broadcast	to	multiple	display	systems.
Event	sourcing	is	also	an	effective	platform	for	analyzing	historic	information,	since	you	can

replicate	any	past	state	in	the	event	log.	You	can	also	easily	investigate	alternative	scenarios	by
introducing	hypothetical	events	into	an	analysis	processor.
Event	sourcing	does	add	some	complexity—most	notably,	you	have	to	ensure	that	all	state	changes

are	captured	and	stored	as	events.	Some	architectures	and	tools	can	make	that	inconvenient.	Any

collaboration	with	external	systems	needs	to	take	the	event	sourcing	into	account;	you’ll	need	to	be
careful	of	external	side	effects	when	replaying	events	to	rebuild	an	application	state.

14.3.	Memory	Image
One	the	consequences	of	event	sourcing	is	that	the	event	log	becomes	the	definitive	persistent	record
—but	it	is	not	necessary	for	the	application	state	to	be	persistent.	This	opens	up	the	option	of	keeping
the	application	state	in	memory	using	only	in-memory	data	structures.	Keeping	all	your	working	data
in	memory	provides	a	performance	advantage,	since	there’s	no	disk	I/O	to	deal	with	when	an	event	is
processed.	It	also	simplifies	programming	since	there	is	no	need	to	perform	mapping	between	disk
and	in-memory	data	structures.
The	obvious	limitation	here	is	that	you	must	be	able	to	store	all	the	data	you’ll	need	to	access	in

memory.	This	is	an	increasingly	viable	option—we	can	remember	disk	sizes	that	were	considerably
less	than	the	current	memory	sizes.	You	also	need	to	ensure	that	you	can	recover	quickly	enough
from	a	system	crash—either	by	reloading	events	from	the	event	log	or	by	running	a	duplicate	system
and	cutting	over.
You’ll	need	some	explicit	mechanism	to	deal	with	concurrency.	One	route	is	a	transactional

memory	system,	such	as	the	one	that	comes	with	the	Clojure	language.	Another	route	is	to	do	all	input
processing	on	a	single	thread.	Designed	carefully,	a	single-threaded	event	processor	can	achieve
impressive	throughput	at	low	latency	[Fowler	lmax].
Breaking	the	separation	between	in-memory	and	persistent	data	also	affects	how	you	handle	errors.

A	common	approach	is	to	update	a	model	and	roll	back	any	changes	should	an	error	occur.	With	a
memory	image,	you’ll	usually	not	have	an	automated	rollback	facility;	you	either	have	to	write	your
own	(complicated)	or	ensure	that	you	do	thorough	validation	before	you	begin	to	apply	any	changes.

14.4.	Version	Control
For	most	software	developers,	their	most	common	experience	of	an	event-sourced	system	is	a
version	control	system.	Version	control	allows	many	people	on	a	team	to	coordinate	their
modifications	of	a	complex	interconnected	system,	with	the	ability	to	explore	past	states	of	that
system	and	alternative	realities	through	branching.
When	we	think	of	data	storage,	we	tend	to	think	of	a	single-point-of-time	worldview,	which	is	very

limiting	compared	to	the	complexity	supported	by	a	version	control	system.	It’s	therefore	surprising
that	data	storage	tools	haven’t	borrowed	some	of	the	ideas	from	version	control	systems.	After	all,
many	situations	require	historic	queries	and	support	for	multiple	views	of	the	world.
Version	control	systems	are	built	on	top	of	file	systems,	and	thus	have	many	of	the	same	limitations

for	data	storage	as	a	file	system.	They	are	not	designed	for	application	data	storage,	so	are	awkward
to	use	in	that	context.	However,	they	are	worth	considering	for	scenarios	where	their	timeline
capabilities	are	useful.

14.5.	XML	Databases
Around	the	turn	of	the	millennium,	people	seemed	to	want	to	use	XML	for	everything,	and	there	was
a	flurry	of	interest	in	databases	specifically	designed	to	store	and	query	XML	documents.	While	that
flurry	had	as	little	impact	on	the	relational	dominance	as	previous	blusters,	XML	databases	are	still
around.
We	think	of	XML	databases	as	document	databases	where	the	documents	are	stored	in	a	data	model

compatible	with	XML,	and	where	various	XML	technologies	are	used	to	manipulate	the	document.

You	can	use	various	forms	of	XML	schema	definitions	(DTDs,	XML	Schema,	RelaxNG)	to	check
document	formats,	run	queries	with	XPath	and	XQuery,	and	perform	transformations	with	XSLT.
Relational	databases	took	on	XML	and	blended	these	XML	capabilities	with	relational	ones,	usually

by	embedding	XML	documents	as	a	column	type	and	allowing	some	way	to	blend	SQL	and	XML
query	languages.
Of	course	there’s	no	reason	why	you	can’t	use	XML	as	a	structuring	mechanism	within	a	key-value

store.	XML	is	less	fashionable	these	days	than	JSON,	but	is	equally	capable	of	storing	complex
aggregates,	and	XML’s	schema	and	query	capabilities	are	greater	than	what	you	can	typically	get	for
JSON.	Using	an	XML	database	means	that	the	database	itself	is	able	to	take	advantage	of	the	XML
structure	and	not	just	treat	the	value	as	a	blob,	but	that	advantage	needs	to	be	weighed	with	the	other
database	characteristics.

14.6.	Object	Databases
When	object-oriented	programming	started	its	rise	in	popularity,	there	was	a	flurry	of	interest	in
object-oriented	databases.	The	focus	here	was	the	complexity	of	mapping	from	in-memory	data
structures	to	relational	tables.	The	idea	of	an	object-oriented	database	is	that	you	avoid	this
complexity—the	database	would	automatically	manage	the	storage	of	in-memory	structures	onto
disk.	You	could	think	of	it	as	a	persistent	virtual	memory	system,	allowing	you	to	program	with
persistence	yet	without	taking	any	notice	of	a	database	at	all.
Object	databases	didn’t	take	off.	One	reason	was	that	the	benefit	of	the	close	integration	with	the

application	meant	you	couldn’t	easily	access	data	other	than	with	that	application.	A	shift	from
integration	databases	to	application	databases	could	well	make	object	databases	more	viable	in	the
future.
An	important	issue	with	object	databases	is	how	to	deal	with	migration	as	the	data	structures

change.	Here,	the	close	linkage	between	the	persistent	storage	and	in-memory	structures	can	become
a	problem.	Some	object	databases	include	the	ability	to	add	migration	functions	to	object	definitions.

14.7.	Key	Points
•	NoSQL	is	just	one	set	of	data	storage	technologies.	As	they	increase	comfort	with	polyglot
persistence,	we	should	consider	other	data	storage	technologies	whether	or	not	they	bear	the
NoSQL	label.

Chapter	15.	Choosing	Your	Database

At	this	point	in	the	book,	we’ve	covered	a	lot	of	the	general	issues	you	need	to	be	aware	of	to	make
decisions	in	the	new	world	of	polyglot	persistence.	It’s	now	time	to	talk	about	choosing	your
databases	for	future	development	work.	Naturally,	we	don’t	know	your	particular	circumstances,	so
we	can’t	give	you	your	answer,	nor	can	we	reduce	it	to	a	simple	set	of	rules	to	follow.	Furthermore,
it’s	still	early	days	in	the	production	use	of	NoSQL	systems,	so	even	what	we	do	know	is	immature—
in	a	couple	of	years	we	may	well	think	differently.
We	see	two	broad	reasons	to	consider	a	NoSQL	database:	programmer	productivity	and	data	access

performance.	In	different	cases	these	forces	may	complement	or	contradict	each	other.	Both	of	them
are	difficult	to	assess	early	on	in	a	project,	which	is	awkward	since	your	choice	of	a	data	storage
model	is	difficult	to	abstract	so	as	to	allow	you	to	change	your	mind	later	on.

15.1.	Programmer	Productivity
Talk	to	any	developer	of	an	enterprise	application,	and	you’ll	sense	frustration	from	working	with
relational	databases.	Information	is	usually	collected	and	displayed	in	terms	of	aggregates,	but	it	has
to	be	transformed	into	relations	in	order	to	persist	it.	This	chore	is	easier	than	it	used	to	be;	during	the
1990s	many	projects	groaned	under	the	effort	of	building	object-relational	mapping	layers.	By	the
2000s,	we’ve	seen	popular	ORM	frameworks	such	as	Hibernate,	iBATIS,	and	Rails	Active	Record	that
reduce	much	of	that	burden.	But	this	has	not	made	the	problem	go	away.	ORMs	are	a	leaky
abstraction,	there	are	always	some	cases	that	need	more	attention—particularly	in	order	to	get	decent
performance.
In	this	situation	aggregate-oriented	databases	can	offer	a	tempting	deal.	We	can	remove	the	ORM

and	persist	aggregates	naturally	as	we	use	them.	We’ve	come	across	several	projects	that	claim
palpable	benefits	from	moving	to	an	aggregate-oriented	solution.
Graph	databases	offer	a	different	simplification.	Relational	databases	do	not	do	a	good	job	with

data	that	has	a	lot	of	relationships.	A	graph	database	offers	both	a	more	natural	storage	API	for	this
kind	of	data	and	query	capabilities	designed	around	these	kinds	of	structures.
All	kinds	of	NoSQL	systems	are	better	suited	to	nonuniform	data.	If	you	find	yourself	struggling

with	a	strong	schema	in	order	to	support	ad-hoc	fields,	then	the	schemaless	NoSQL	databases	can
offer	considerable	relief.
These	are	the	major	reasons	why	the	programming	model	of	NoSQL	databases	may	improve	the

productivity	of	your	development	team.	The	first	step	of	assessing	this	for	your	circumstances	is	to
look	at	what	your	software	will	need	to	do.	Run	through	the	current	features	and	see	if	and	how	the
data	usage	fits.	As	you	do	this,	you	may	begin	to	see	that	a	particular	data	model	seems	like	a	good	fit.
That	closeness	of	fit	suggests	that	using	that	model	will	lead	to	easier	programming.
As	you	do	this,	remember	that	polyglot	persistence	is	about	using	multiple	data	storage	solutions.	It

may	be	that	you’ll	see	different	data	storage	models	fit	different	parts	of	your	data.	This	would
suggest	using	different	databases	for	different	aspects	of	your	data.	Using	multiple	databases	is
inherently	more	complex	than	using	a	single	store,	but	the	advantages	of	a	good	fit	in	each	case	may
be	better	overall.
As	you	look	at	the	data	model	fit,	pay	particular	attention	to	cases	where	there	is	a	problem.	You

may	see	most	of	your	features	will	work	well	with	an	aggregate,	but	a	few	will	not.	Having	a	few
features	that	don’t	fit	the	model	well	isn’t	a	reason	to	avoid	the	model—the	difficulties	of	the	bad	fit

may	not	overwhelm	the	advantages	of	the	good	fit—but	it’s	useful	to	spot	and	highlight	these	bad	fit
cases.
Going	through	your	features	and	assessing	your	data	needs	should	lead	you	to	one	or	more

alternatives	for	how	to	handle	your	database	needs.	This	will	give	you	a	starting	point,	but	the	next
step	is	to	try	things	out	by	actually	building	software.	Take	some	initial	features	and	build	them,	while
paying	close	attention	to	how	straightforward	it	is	to	use	the	technology	you’re	considering.	In	this
situation,	it	may	be	worthwhile	to	build	the	same	features	with	a	couple	of	different	databases	in	order
to	see	which	works	best.	People	are	often	reluctant	to	do	this—no	one	likes	to	build	software	that	will
be	discarded.	Yet	this	is	an	essential	way	to	judge	how	effective	a	particular	framework	is.
Sadly,	there	is	no	way	to	properly	measure	how	productive	different	designs	are.	We	have	no	way

of	properly	measuring	output.	Even	if	you	build	exactly	the	same	feature,	you	can’t	truly	compare	the
productivity	because	knowledge	of	building	it	once	makes	it	easier	a	second	time,	and	you	can’t	build
them	simultaneously	with	identical	teams.	What	you	can	do	is	ensure	the	people	who	did	the	work	can
give	an	opinion.	Most	developers	can	sense	when	they	are	more	productive	in	one	environment	than
another.	Although	this	is	a	subjective	judgment,	and	you	may	well	get	disagreements	between	team
members,	this	is	the	best	judgment	you	will	get.	In	the	end	we	believe	the	team	doing	the	work	should
decide.
When	trying	out	a	database	to	judge	productivity,	it’s	important	to	also	try	out	some	of	the	bad	fit

cases	we	mentioned	earlier.	That	way	the	team	can	get	a	feeling	of	both	the	happy	path	and	the
difficult	one,	to	gain	an	overall	impression.
This	approach	has	its	flaws.	Often	you	can’t	get	a	full	appreciation	of	a	technology	without

spending	many	months	using	it—and	running	an	assessment	for	that	long	is	rarely	cost-effective.	But
like	many	things	in	life,	we	need	to	make	the	best	assessment	we	can,	knowing	its	flaws,	and	go	with
that.	The	essential	thing	here	is	to	base	the	decision	on	as	much	real	programming	as	you	can.	Even	a
mere	week	working	with	a	technology	can	tell	you	things	you’d	never	learn	from	a	hundred	vendor
presentations.

15.2.	Data-Access	Performance
The	concern	that	led	to	the	growth	of	NoSQL	databases	was	rapid	access	to	lots	of	data.	As	large
websites	emerged,	they	wanted	to	grow	horizontally	and	run	on	large	clusters.	They	developed	the
early	NoSQL	databases	to	help	them	run	efficiently	on	such	architectures.	As	other	data	users	follow
their	lead,	again	the	focus	is	on	accessing	data	rapidly,	often	with	large	volumes	involved.
There	are	many	factors	that	can	determine	a	database’s	better	performance	than	the	relational

default	in	various	circumstances.	A	aggregate-oriented	database	may	be	very	fast	for	reading	or
retrieving	aggregates	compared	to	a	relational	database	where	data	is	spread	over	many	tables.	Easier
sharding	and	replication	over	clusters	allows	horizontal	scaling.	A	graph	database	can	retrieve	highly
connected	data	more	quickly	than	using	relational	joins.
If	you’re	investigating	NoSQL	databases	based	on	performance,	the	most	important	thing	you	must

do	is	to	test	their	performance	in	the	scenarios	that	matter	to	you.	Reasoning	about	how	a	database
may	perform	can	help	you	build	a	short	list,	but	the	only	way	you	can	assess	performance	properly	is
to	build	something,	run	it,	and	measure	it.
When	building	a	performance	assessment,	the	hardest	thing	is	often	getting	a	realistic	set	of

performance	tests.	You	can’t	build	your	actual	system,	so	you	need	to	build	a	representative	subset.
It’s	important,	however,	for	this	subset	to	be	as	faithful	a	representative	as	possible.	It’s	no	good
taking	a	database	that’s	intended	to	serve	hundreds	of	concurrent	users	and	assessing	its	performance

with	a	single	user.	You	are	going	to	need	to	build	representative	loads	and	data	volumes.
Particularly	if	you	are	building	a	public	website,	it	can	be	difficult	to	build	a	high-load	testbed.

Here,	a	good	argument	can	be	made	for	using	cloud	computing	resources	both	to	generate	load	and
to	build	a	test	cluster.	The	elastic	nature	of	cloud	provisioning	is	very	helpful	for	short-lived
performance	assessment	work.
You’re	not	going	to	be	able	to	test	every	way	in	which	your	application	will	be	used,	so	you	need	to

build	a	representative	subset.	Choose	scenarios	that	are	the	most	common,	the	most	performance-
dependent,	and	those	that	don’t	seem	to	fit	your	database	model	well.	The	latter	may	alert	you	to	any
risks	outside	of	your	main	use	cases.
Coming	up	with	volumes	to	test	for	can	be	tricky,	especially	early	on	in	a	project	when	it’s	not

clear	what	your	production	volumes	are	likely	to	be.	You	will	have	to	come	up	with	something	to
base	your	thinking	on,	so	be	sure	to	make	it	explicit	and	to	communicate	it	with	all	the	stakeholders.
Making	it	explicit	reduces	the	chance	that	different	people	have	varying	ideas	on	what	a	“heavy	read
load”	is.	It	also	allows	you	to	spot	problems	more	easily	should	your	later	discoveries	wander	off
your	original	assumptions.	Without	making	your	assumptions	explicit,	it’s	easier	to	drift	away	from
them	without	realizing	you	need	to	redo	your	testbed	as	you	learn	new	information.

15.3.	Sticking	with	the	Default
Naturally	we	think	that	NoSQL	is	a	viable	option	in	many	circumstances—otherwise	we	wouldn’t
have	spent	several	months	writing	this	book.	But	we	also	realize	that	there	are	many	cases,	indeed	the
majority	of	cases,	where	you’re	better	off	sticking	with	the	default	option	of	a	relational	database.
Relational	databases	are	well	known;	you	can	easily	find	people	with	the	experience	of	using	them.

They	are	mature,	so	you	are	less	likely	to	run	into	the	rough	edges	of	new	technology.	There	are	lots
of	tools	that	are	built	on	relational	technology	that	you	can	take	advantage	of.	You	also	don’t	have	to
deal	with	the	political	issues	of	making	an	unusual	choice—picking	a	new	technology	will	always
introduce	a	risk	of	problems	should	things	run	into	difficulties.
So,	on	the	whole,	we	tend	to	take	a	view	that	to	choose	a	NoSQL	database	you	need	to	show	a	real

advantage	over	relational	databases	for	your	situation.	There’s	no	shame	in	doing	the	assessments	for
programmability	and	performance,	finding	no	clear	advantage,	and	staying	with	the	relational	option.
We	think	there	are	many	cases	where	it	is	advantageous	to	use	NoSQL	databases,	but	“many”	does	not
mean	“all”	or	even	“most.”

15.4.	Hedging	Your	Bets
One	of	the	greatest	difficulties	we	have	in	giving	advice	on	choosing	a	data-storage	option	is	that	we
don’t	have	that	much	data	to	go	on.	As	we	write	this,	we	are	only	seeing	very	early	adopters
discussing	their	experiences	with	these	technologies,	so	we	don’t	have	a	clear	picture	of	the	actual
pros	and	cons.
With	the	situation	this	uncertain,	there’s	more	of	an	argument	for	encapsulating	your	database

choice—keeping	all	your	database	code	in	a	section	of	your	codebase	that	is	relatively	easy	to	replace
should	you	decide	to	change	your	database	choice	later.	The	classic	way	to	do	this	is	through	an
explicit	data	store	layer	in	your	application—using	patterns	such	as	Data	Mapper	and	Repository
[Fowler	PoEAA].	Such	an	encapsulation	layer	does	carry	a	cost,	particularly	when	you	are	unsure
about	using	quite	different	models,	such	as	key-value	versus	graph	data	models.	Worse	still,	we	don’t
have	experience	yet	with	encapsulating	data	layers	between	these	very	different	kinds	of	data	stores.
On	the	whole,	our	advice	is	to	encapsulate	as	a	default	strategy,	but	pay	attention	to	the	cost	of

insulating	layer.	If	it’s	getting	too	much	of	a	burden,	for	example	by	making	it	harder	to	use	some
helpful	database	features,	then	it’s	a	good	argument	for	using	the	database	that	has	those	features.	This
information	may	be	just	what	you	need	to	make	a	database	choice	and	thus	eliminate	the
encapsulation.
This	is	another	argument	for	decomposing	the	database	layer	into	services	that	encapsulate	data

storage	(“Service	Usage	over	Direct	Data	Store	Usage,”	p.	136).	As	well	as	reducing	coupling
between	various	services,	this	has	the	additional	advantage	of	making	it	easier	to	replace	a	database
should	things	not	work	out	in	the	future.	This	is	a	plausible	approach	even	if	you	end	up	using	the
same	database	everywhere—should	things	go	badly,	you	can	gradually	swap	it	out,	focusing	on	the
most	problematic	services	first.
This	design	advice	applies	just	as	much	if	you	prefer	to	stick	with	a	relational	option.	By

encapsulating	segments	of	your	database	into	services,	you	can	replace	parts	of	your	data	store	with	a
NoSQL	technology	as	it	matures	and	the	advantages	become	clearer.

15.5.	Key	Points
•	The	two	main	reasons	to	use	NoSQL	technology	are:
•	To	improve	programmer	productivity	by	using	a	database	that	better	matches	an	application’s
needs.

•	To	improve	data	access	performance	via	some	combination	of	handling	larger	data	volumes,
reducing	latency,	and	improving	throughput.

•	It’s	essential	to	test	your	expectations	about	programmer	productivity	and/or	performance
before	committing	to	using	a	NoSQL	technology.

•	Service	encapsulation	supports	changing	data	storage	technologies	as	needs	and	technology
evolve.	Separating	parts	of	applications	into	services	also	allows	you	to	introduce	NoSQL	into
an	existing	application.

•	Most	applications,	particularly	nonstrategic	ones,	should	stick	with	relational	technology—at
least	until	the	NoSQL	ecosystem	becomes	more	mature.

15.6.	Final	Thoughts
We	hope	you’ve	found	this	book	enlightening.	When	we	started	writing	it,	we	were	frustrated	by	the
lack	of	anything	that	would	give	us	a	broad	survey	of	the	NoSQL	world.	In	writing	this	book	we	had
to	make	that	survey	ourselves,	and	we’ve	found	it	an	enjoyable	journey.	We	hope	your	journey
through	this	material	is	considerably	quicker	but	no	less	enjoyable.
At	this	point	you	may	be	considering	making	use	of	a	NoSQL	technology.	If	so	this	book	is	only	an

early	step	in	building	your	understanding.	We	urge	you	to	download	some	databases	and	work	with
them,	for	we’re	of	the	firm	conviction	that	you	can	only	understand	a	technology	properly	by
working	with	it—finding	its	strengths	and	the	inevitable	gotchas	that	never	make	it	into	the
documentation.
We	expect	that	most	people,	including	most	readers	of	this	book,	will	not	be	using	NoSQL	for	a

while.	It	is	a	new	technology	and	we	are	still	early	in	the	process	of	understanding	when	to	use	it	and
how	to	use	it	well.	But	as	with	anything	in	the	software	world,	things	are	changing	more	rapidly	than
we	dare	predict,	so	do	keep	an	eye	on	what’s	happening	in	this	field.
We	hope	you’ll	also	find	other	books	and	articles	to	help	you.	We	think	the	best	material	on	NoSQL

will	be	written	after	this	book	is	done,	so	we	can’t	point	you	to	anywhere	in	particular	as	we	write

this.	We	do	have	an	active	presence	on	the	Web,	so	for	our	more	up-to-date	thoughts	on	the	NoSQL
world	take	a	look	at	www.sadalage.com	and	http://martinfowler.com/nosql.html.

http://www.sadalage.com
http://martinfowler.com/nosql.html

Bibliography

[Agile	Methods]	www.agilealliance.org.

[Amazon’s	Dynamo]	www.allthingsdistributed.com/2007/10/amazons_dynamo.html.

[Amazon	DynamoDB]	http://aws.amazon.com/dynamodb.

[Amazon	SimpleDB]	http://aws.amazon.com/simpledb.

[Ambler	and	Sadalage]	Ambler,	Scott	and	Pramodkumar	Sadalage.	Refactoring	Databases:
Evolutionary	Database	Design.	Addison-Wesley.	2006.	ISBN	978-0321293534.

[Berkeley	DB]	www.oracle.com/us/products/database/berkeley-db.

[Blueprints]	https://github.com/tinkerpop/blueprints/wiki.

[Brewer]	Brewer,	Eric.	Towards	Robust	Distributed	Systems.	www.cs.berkeley.edu/~brewer/cs262b-
2004/PODC-keynote.pdf.

[Cages]	http://code.google.com/p/cages.

[Cassandra]	http://cassandra.apache.org.

[Chang	etc.]	Chang,	Fay,	Jeffrey	Dean,	Sanjay	Ghemawat,	Wilson	C.	Hsieh,	Deborah	A.	Wallach,
Mike	Burrows,	Tushar	Chandra,	Andrew	Fikes,	and	Robert	E.	Gruber.	Bigtable:	A	Distributed
Storage	System	for	Structured	Data.	http://research.google.com/archive/bigtable-osdi06.pdf.

[CouchDB]	http://couchdb.apache.org.

[CQL]	www.slideshare.net/jericevans/cql-sql-in-cassandra.

[CQRS]	http://martinfowler.com/bliki/CQRS.html.

[C-Store]	Stonebraker,	Mike,	Daniel	Abadi,	Adam	Batkin,	Xuedong	Chen,	Mitch	Cherniack,	Miguel
Ferreira,	Edmond	Lau,	Amerson	Lin,	Sam	Madden,	Elizabeth	O’Neil,	Pat	O’Neil,	Alex	Rasin,
Nga	Tran,	and	Stan	Zdonik.	C-Store:	A	Column-oriented	DBMS.
http://db.csail.mit.edu/projects/cstore/vldb.pdf.

[Cypher]	http://docs.neo4j.org/chunked/1.6.1/cypher-query-lang.html.

[Daigneau]	Daigneau,	Robert.	Service	Design	Patterns.	Addison-Wesley.	2012.	ISBN	032154420X.

[DBDeploy]	http://dbdeploy.com.

[DBMaintain]	www.dbmaintain.org.

[Dean	and	Ghemawat]	Dean,	Jeffrey	and	Sanjay	Ghemawat.	MapReduce:	Simplified	Data	Processing
on	Large	Clusters.	http://static.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf.

[Dijkstra’s]	http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm.

[Evans]	Evans,	Eric.	Domain-Driven	Design.	Addison-Wesley.	2004.	ISBN	0321125215.

[FlockDB]	https://github.com/twitter/flockdb.

http://www.agilealliance.org
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://aws.amazon.com/dynamodb
http://aws.amazon.com/simpledb
http://www.oracle.com/us/products/database/berkeley-db
https://github.com/tinkerpop/blueprints/wiki
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://code.google.com/p/cages
http://cassandra.apache.org
http://research.google.com/archive/bigtable-osdi06.pdf
http://couchdb.apache.org
http://www.slideshare.net/jericevans/cql-sql-in-cassandra
http://martinfowler.com/bliki/CQRS.html
http://db.csail.mit.edu/projects/cstore/vldb.pdf
http://docs.neo4j.org/chunked/1.6.1/cypher-query-lang.html
http://dbdeploy.com
http://www.dbmaintain.org
http://static.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://github.com/twitter/flockdb

[Fowler	DSL]	Fowler,	Martin.	Domain-Specific	Languages.	Addison-Wesley.	2010.	ISBN
0321712943.

[Fowler	lmax]	Fowler,	Martin.	The	LMAX	Architecture.	http://martinfowler.com/articles/lmax.html.

[Fowler	PoEAA]	Fowler,	Martin.	Patterns	of	Enterprise	Application	Architecture.	Addison-Wesley.
2003.	ISBN	0321127420.

[Fowler	UML]	Fowler,	Martin.	UML	Distilled.	Addison-Wesley.	2003.	ISBN	0321193687.

[Gremlin]	https://github.com/tinkerpop/gremlin/wiki.

[Hadoop]	http://hadoop.apache.org/mapreduce.

[HamsterDB]	http://hamsterdb.com.

[Hbase]	http://hbase.apache.org.

[Hector]	https://github.com/rantav/hector.

[Hive]	http://hive.apache.org.

[Hohpe	and	Woolf]	Hohpe,	Gregor	and	Bobby	Woolf.	Enterprise	Integration	Patterns.	Addison-
Wesley.	2003.	ISBN	0321200683.

[HTTP]	Fielding,	R.,	J.	Gettys,	J.	Mogul,	H.	Frystyk,	L.	Masinter,	P.	Leach,	and	T.	Berners-Lee.
Hypertext	Transfer	Protocol—HTTP/1.1.	www.w3.org/Protocols/rfc2616/rfc2616.html.

[Hypertable]	http://hypertable.org.

[Infinite	Graph]	www.infinitegraph.com.

[JSON]	http://json.org.

[LevelDB]	http://code.google.com/p/leveldb.

[Liquibase]	www.liquibase.org.

[Lucene]	http://lucene.apache.org.

[Lynch	and	Gilbert]	Lynch,	Nancy	and	Seth	Gilbert.	Brewer’s	conjecture	and	the	feasibility	of
consistent,	available,	partition-tolerant	web	services.
http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf.

[Memcached]	http://memcached.org.

[MongoDB]	www.mongodb.org.

[Monitoring]	www.mongodb.org/display/DOCS/MongoDB+Monitoring+Service.

[MyBatis	Migrator]	http://mybatis.org.

[Neo4J]	http://neo4j.org.

[NoSQL	Debrief]	http://blog.oskarsson.nu/post/22996140866/nosql-debrief.

[NoSQL	Meetup]	http://nosql.eventbrite.com.

http://martinfowler.com/articles/lmax.html
https://github.com/tinkerpop/gremlin/wiki
http://hadoop.apache.org/mapreduce
http://hamsterdb.com
http://hbase.apache.org
https://github.com/rantav/hector
http://hive.apache.org
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://hypertable.org
http://www.infinitegraph.com
http://json.org
http://code.google.com/p/leveldb
http://www.liquibase.org
http://lucene.apache.org
http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf
http://memcached.org
http://www.mongodb.org
http://www.mongodb.org/display/DOCS/MongoDB+Monitoring+Service
http://mybatis.org
http://neo4j.org
http://blog.oskarsson.nu/post/22996140866/nosql-debrief
http://nosql.eventbrite.com

[Notes	Storage	Facility]	http://en.wikipedia.org/wiki/IBM_Lotus_Domino.

[OpsCenter]	www.datastax.com/products/opscenter.

[OrientDB]	www.orientdb.org.

[Oskarsson]	Private	Correspondence.

[Pentaho]	www.pentaho.com.

[Pig]	http://pig.apache.org.

[Pritchett]	www.infoq.com/interviews/dan-pritchett-ebay-architecture.

[Project	Voldemort]	http://project-voldemort.com.

[RavenDB]	http://ravendb.net.

[Redis]	http://redis.io.

[Rekon]	https://github.com/basho/rekon.

[Riak]	http://wiki.basho.com/Riak.html.

[Solr]	http://lucene.apache.org/solr.

[Strozzi	NoSQL]	www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL.

[Tanenbaum	and	Van	Steen]	Tanenbaum,	Andrew	and	Maarten	Van	Steen.	Distributed	Systems.
Prentice-Hall.	2007.	ISBN	0132392275.

[Terrastore]	http://code.google.com/p/terrastore.

[Vogels]	Vogels,	Werner.	Eventually	Consistent—Revisited.
www.allthingsdistributed.com/2008/12/eventually_consistent.html.

[Webber	Neo4J	Scaling]	http://jim.webber.name/2011/03/22/ef4748c3-6459-40b6-bcfa-
818960150e0f.aspx.

[ZooKeeper]	http://zookeeper.apache.org.

http://en.wikipedia.org/wiki/IBM_Lotus_Domino
http://www.datastax.com/products/opscenter
http://www.orientdb.org
http://www.pentaho.com
http://pig.apache.org
http://www.infoq.com/interviews/dan-pritchett-ebay-architecture
http://project-voldemort.com
http://ravendb.net
http://redis.io
https://github.com/basho/rekon
http://wiki.basho.com/Riak.html
http://lucene.apache.org/solr
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL
http://code.google.com/p/terrastore
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://jim.webber.name/2011/03/22/ef4748c3-6459-40b6-bcfa-818960150e0f.aspx
http://zookeeper.apache.org

Index

A
ACID	(Atomic,	Consistent,	Isolated,	and	Durable)	transactions,	19

in	column-family	databases,	109
in	graph	databases,	28,	50,	114–115
in	relational	databases,	10,	26
vs.	BASE,	56

ad	banners,	108–109
aggregate-oriented	databases,	14,	19–23,	147

atomic	updates	in,	50,	61
disadvantages	of,	30
no	ACID	transactions	in,	50
performance	of,	149
vs.	graph	databases,	28

aggregates,	14–23
changing	structure	of,	98,	132
modeling,	31
real-time	analytics	with,	33
updating,	26

agile	methods,	123
Amazon,	9

See	also	DynamoDB,	SimpleDB
analytics

counting	website	visitors	for,	108
of	historic	information,	144
real-time,	33,	98

Apache	Pig	language,	76
Apache	ZooKeeper	library,	104,	115
application	databases,	7,	146

updating	materialized	views	in,	31
arcs	(graph	databases).	See	edges
atomic	cross-document	operations,	98
atomic	rebalancing,	58
atomic	transactions,	92,	104
atomic	updates,	50,	61
automated	failovers,	94
automated	merges,	48
automated	rollbacks,	145
auto-sharding,	39
availability,	53

in	column-family	databases,	104–105
in	document	databases,	93
in	graph	databases,	115
vs.	consistency,	54
See	also	CAP	theorem

averages,	calculating,	72

B
backward	compatibility,	126,	131
BASE	(Basically	Available,	Soft	state,	Eventual	consistency),	56
Berkeley	DB,	81
BigTable	DB,	9,	21–22
bit-mapped	indexes,	106
blogging,	108
Blueprints	property	graph,	115
Brewer,	Eric,	53
Brewer ’s	Conjecture.	See	CAP	theorem
buckets	(Riak),	82

default	values	for	consistency	for,	84
domain,	83
storing	all	data	together	in,	82

business	transactions,	61

C
caching

performance	of,	39,	137
stale	data	in,	50

Cages	library,	104
CAP	(Consistency,	Availability,	and	Partition	tolerance)	theorem,	53–56

for	document	databases,	93
for	Riak,	86

CAS	(compare-and-set)	operations,	62
Cassandra	DB,	10,	21–22,	99–109

availability	in,	104–105
column	families	in:
commands	for,	105–106
standard,	101
super,	101–102

columns	in,	100
expiring,	108–109
indexing,	106–107
reading,	107

super,	101
compaction	in,	103
consistency	in,	103–104
ETL	tools	for,	139
hinted	handoff	in,	104
keyspaces	in,	102–104
memtables	in,	103
queries	in,	105–107
repairs	in,	103–104
replication	factor	in,	103
scaling	in,	107
SSTables	in,	103
timestamps	in,	100
transactions	in,	104
wide/skinny	rows	in,	23

clients,	processing	on,	67
Clojure	language,	145
cloud	computing,	149
clumping,	39
clusters,	8–10,	67–72,	76,	149

in	file	systems,	8
in	Riak,	87
resiliency	of,	8

column-family	databases,	21–23,	99–109
ACID	transactions	in,	109
columns	for	materialized	views	in,	31
combining	peer-to-peer	replication	and	sharding	in,	43–44
consistency	in,	103–104
modeling	for,	34
performance	in,	103
schemalessness	of,	28
vs.	key-value	databases,	21
wide/skinny	rows	in,	23

combinable	reducers,	70–71
compaction	(Cassandra),	103
compatibility,	backward,	126,	131
concurrency,	145

in	file	systems,	141
in	relational	databases,	4
offline,	62

conditional	updates,	48,	62–63
conflicts

key,	82
read-write,	49–50
resolving,	64
write-write,	47–48,	64

consistency,	47–59
eventual,	50,	84
in	column-family	databases,	103–104
in	graph	databases,	114
in	master-slave	replication,	52
in	MongoDB,	91
logical,	50
optimistic/pessimistic,	48
read,	49–52,	56
read-your-writes,	52
relaxing,	52–56
replication,	50
session,	52,	63
trading	off,	57
update,	47,	56,	61
vs.	availability,	54
write,	92
See	also	CAP	theorem

content	hashes,	62–63
content	management	systems,	98,	108
CouchDB,	10,	91

conditional	updates	in,	63
replica	sets	in,	94

counters,	for	version	stamps,	62–63
CQL	(Cassandra	Query	Language),	10,	106
CQRS	(Command	Query	Responsibility	Segregation),	143
cross-document	operations,	98
C-Store	DB,	21
Cypher	language,	115–119

D
Data	Mapper	and	Repository	pattern,	151
data	models,	13,	25

aggregate-oriented,	14–23,	30
document,	20
key-value,	20
relational,	13–14

data	redundancy,	94

databases
choosing,	7,	147–152
deploying,	139
encapsulating	in	explicit	layer,	151
NoSQL,	definition	of,	10–11
shared	integration	of,	4,	6

Datastax	Ops	Center,	139
DBDeploy	framework,	125
DBMaintain	tool,	126
deadlocks,	48
demo	access,	108
Dependency	Network	pattern,	77
deployment	complexity,	139
Dijkstra’s	algorithm,	118
disaster	recovery,	94
distributed	file	systems,	76,	141
distributed	version	control	systems,	48

version	stamps	in,	64
distribution	models,	37–43

See	also	replications,	sharding,	single	server	approach
document	databases,	20,	23,	89–98

availability	in,	93
embedding	child	documents	into,	90
indexes	in,	25
master-slave	replication	in,	93
performance	in,	91
queries	in,	25,	94–95
replica	sets	in,	94
scaling	in,	95
schemalessness	of,	28,	98
XML	support	in,	146

domain	buckets	(Riak),	83
Domain-Driven	Design,	14
DTDs	(Document	Type	Definitions),	146
durability,	56–57
DynamoDB,	9,	81,	100

shopping	carts	in,	55
Dynomite	DB,	10

E
early	prototypes,	109
e-commerce

data	modeling	for,	14
flexible	schemas	for,	98
polyglot	persistence	of,	133–138
shopping	carts	in,	55,	85,	87

edges	(graph	databases),	26,	111
eligibility	rules,	26
enterprises

commercial	support	of	NoSQL	for,	138–139
concurrency	in,	4
DB	as	backing	store	for,	4
event	logging	in,	97
integration	in,	4
polyglot	persistence	in,	138–139
security	of	data	in,	139

error	handling,	4,	145
etags,	62
ETL	tools,	139
Evans,	Eric,	10
event	logging,	97,	107–108
event	sourcing,	138,	142,	144
eventual	consistency,	50

in	Riak,	84
expiring	usage,	108–109

F
failovers,	automated,	94
file	systems,	141

as	backing	store	for	RDBMS,	3
cluster-aware,	8
concurrency	in,	141
distributed,	76,	141
performance	of,	141
queries	in,	141

FlockDB,	113
data	model	of,	27
node	distribution	in,	115

G
Gilbert,	Seth,	53
Google,	9

Google	BigTable.	See	BigTable
Google	File	System,	141

graph	databases,	26–28,	111–121,	148
ACID	transactions	in,	28,	50,	114–115
aggregate-ignorance	of,	19
availability	in,	115
consistency	in,	114
creating,	113
edges	(arcs)	in,	26,	111
held	entirely	in	memory,	119
master-slave	replication	in,	115
migrations	in,	131
modeling	for,	35
nodes	in,	26,	111–117
performance	of,	149
properties	in,	111
queries	in,	115–119
relationships	in,	111–121
scaling	in,	119
schemalessness	of,	28
single	server	configuration	of,	38
traversing,	111–117
vs.	aggregate	databases,	28
vs.	relational	databases,	27,	112
wrapping	into	service,	136

Gremlin	language,	115
GUID	(Globally	Unique	Identifier),	62

H
Hadoop	project,	67,	76,	141
HamsterDB,	81
hash	tables,	62–63,	81
HBase	DB,	10,	21–22,	99–100
Hector	client,	105
Hibernate	framework,	5,	147
hinted	handoff,	104
hive	DB,	76
hot	backup,	40,	42
hotel	booking,	4,	55
HTTP	(Hypertext	Transfer	Protocol),	7

interfaces	based	on,	85
updating	with,	62

Hypertable	DB,	10,	99–100

I

iBATIS,	5,	147
impedance	mismatch,	5,	12
inconsistency

in	shopping	carts,	55
of	reads,	49
of	updates,	56
window	of,	50–51,	56

indexes
bit-mapped,	106
in	document	databases,	25
stale	data	in,	138
updating,	138

Infinite	Graph	DB,	113
data	model	of,	27
node	distribution	in,	114–115

initial	tech	spikes,	109
integration	databases,	6,	11
interoperability,	7

J
JSON	(JavaScript	Object	Notation),	7,	94–95,	146

K
keys	(key-value	databases)

composite,	74
conflicts	of,	82
designing,	85
expiring,	85
grouping	into	partitions,	70

keyspaces	(Cassandra),	102–104
key-value	databases,	20,	23,	81–88

consistency	of,	83–84
modeling	for,	31–33
no	multiple	key	operations	in,	88
schemalessness	of,	28
sharding	in,	86
structure	of	values	in,	86
transactions	in,	84,	88
vs.	column-family	databases,	21
XML	support	in,	146

L
Liquibase	tool,	126

location-based	services,	120
locks

dead,	48
offline,	52

lost	updates,	47
Lotus	DB,	91
Lucene	library,	85,	88,	116
Lynch,	Nancy,	53

M
MapReduce	framework,	67
map-reduce	pattern,	67–77

calculations	with,	72
incremental,	31,	76–77
maps	in,	68
materialized	views	in,	76
partitions	in,	70
reusing	intermediate	outputs	in,	76
stages	for,	73–76

master-slave	replication,	40–42
appointing	masters	in,	41,	57
combining	with	sharding,	43
consistency	of,	52
in	document	databases,	93
in	graph	databases,	115
version	stamps	in,	63

materialized	views,	30
in	map-reduce,	76
updating,	31

Memcached	DB,	81,	87
memory	images,	144–145
memtables	(Cassandra),	103
merges,	automated,	48
Microsoft	SQL	Server,	8
migrations,	123–132

during	development,	124,	126
in	graph	databases,	131
in	legacy	projects,	126–128
in	object-oriented	databases,	146
in	schemaless	databases,	128–132
incremental,	130
transition	phase	of,	126–128

mobile	apps,	131
MongoDB,	10,	91–97

collections	in,	91
consistency	in,	91
databases	in,	91
ETL	tools	for,	139
queries	in,	94–95
replica	sets	in,	91,	93,	96
schema	migrations	in,	128–131
sharding	in,	96
slaveOk	parameter	in,	91–92,	96
terminology	in,	89
WriteConcern	parameter	in,	92

MongoDB	Monitoring	Service,	139
MyBatis	Migrator	tool,	126
MySQL	DB,	53,	119

N
Neo4J	DB,	113–118

ACID	transactions	in,	114–115
availability	in,	115
creating	graphs	in,	113
data	model	of,	27
replicated	slaves	in,	115
service	wrapping	in,	136

nodes	(graph	databases),	26,	111
distributed	storage	for,	114
finding	paths	between,	117
indexing	properties	of,	115–116

nonuniform	data,	10,	28,	30
NoSQL	databases

advantages	of,	12
definition	of,	10–11
lack	of	support	for	transactions	in,	10,	61
running	of	clusters,	10
schemalessness	of,	10

O
object-oriented	databases,	5,	146

migrations	in,	146
vs.	relational	databases,	6

offline	concurrency,	62

offline	locks,	52
Optimistic	Offline	Lock,	62
Oracle	DB

redo	log	in,	104
terminology	in,	81,	89

Oracle	RAC	DB,	8
OrientDB,	91,	113
ORM	(Object-Relational	Mapping)	frameworks,	5–6,	147
Oskarsson,	Johan,	9

P
partition	tolerance,	53–54

See	also	CAP	theorem
partitioning,	69–70
peer-to-peer	replication,	42–43

durability	of,	58
inconsistency	of,	43
version	stamps	in,	63–64

Pentaho	tool,	139
performance

and	sharding,	39
and	transactions,	53
binary	protocols	for,	7
caching	for,	39,	137
data-access,	149–150
in	aggregate-oriented	databases,	149
in	column-family	databases,	103
in	document	databases,	91
in	graph	databases,	149
responsiveness	of,	48
tests	for,	149

pipes-and-filters	approach,	73
polyglot	persistence,	11,	133–139,	148

and	deployment	complexity,	139
in	enterprises,	138–139

polyglot	programming,	133–134
processing,	on	clients/servers,	67
programmer	productivity,	147–149
purchase	orders,	25

Q
queries

against	varying	aggregate	structure,	98
by	data,	88,	94
by	key,	84–86
for	files,	141
in	column-family	databases,	105–107
in	document	databases,	25,	94–95
in	graph	databases,	115–119
precomputed	and	cached,	31
via	views,	94

quorums,	57,	59
read,	58
write,	58,	84

R
Rails	Active	Record	framework,	147
RavenDB,	91

atomic	cross-document	operations	in,	98
replica	sets	in,	94
transactions	in,	92

RDBMS.	See	relational	databases
reads

consistency	of,	49–52,	56,	58
horizontal	scaling	for,	94,	96
inconsistent,	49
multiple	nodes	for,	143
performance	of,	52
quorums	of,	58
repairs	of,	103
resilience	of,	40–41
separating	from	writes,	41
stale,	56

read-write	conflicts,	49–50
read-your-writes	consistency,	52
Real	Time	Analytics,	33
Real	Time	BI,	33
rebalancing,	atomic,	58
recommendation	engines,	26,	35,	121,	138
Redis	DB,	81–83
redo	log,	104
reduce	functions,	69

combinable,	70–71
regions.	See	map-reduce	pattern,	partitions	in

Rekon	browser	for	Riak,	139
relational	databases	(RDBMS),	13,	17

advantages	of,	3–5,	7–8,	150
aggregate-ignorance	of,	19
backing	store	in,	3
clustered,	8
columns	in,	13,	90
concurrency	in,	4
defining	schemas	for,	28
impedance	mismatch	in,	5,	12
licensing	costs	of,	8
main	memory	in,	3
modifying	multiple	records	at	once	in,	26
partitions	in,	96
persistence	in,	3
relations	(tables)	in,	5,	13
schemas	for,	29–30,	123–128
security	in,	7
sharding	in,	8
simplicity	of	relationships	in,	112
strong	consistency	of,	47
terminology	in,	81,	89
transactions	in,	4,	26,	92
tuples	(rows)	in,	5,	13–14
views	in,	30
vs.	graph	databases,	27,	112
vs.	object-oriented	databases,	6
XML	support	in,	146

relationships,	25,	111–121
dangling,	114
direction	of,	113,	116,	118
in	RDBMS,	112
properties	of,	113–115
traversing,	111–117

RelaxNG,	146
replica	sets,	91,	93,	96
replication	factor,	58

in	column-family	databases,	103
in	Riak,	84

replications,	37
combining	with	sharding,	43
consistency	of,	42,	50

durability	of,	57
over	clusters,	149
performance	of,	39
version	stamps	in,	63–64
See	also	master-slave	replication,	peer-to-peer	replication

resilience
and	sharding,	39
read,	40–41

responsiveness,	48
Riak	DB,	81–83

clusters	in,	87
controlling	CAP	in,	86
eventual	consistency	in,	84
HTTP-based	interface	of,	85
link-walking	in,	25
partial	retrieval	in,	25
replication	factor	in,	84
service	wrapping	in,	136
terminology	in,	81
transactions	in,	84
write	tolerance	of,	84

Riak	Search,	85,	88
rich	domain	model,	113
rollbacks,	automated,	145
routing,	120
rows	(RDBMS).	See	tuples

S
scaffolding	code,	126
scaling,	95

horizontal,	149
for	reads,	94,	96
for	writes,	96

in	column-family	databases,	107
in	document	databases,	95
in	graph	databases,	119
vertical,	8

Scatter-Gather	pattern,	67
schemaless	databases,	28–30,	148

implicit	schema	of,	29
schema	changes	in,	128–132

schemas

backward	compatibility	of,	126,	131
changing,	128–132
during	development,	124,	126
implicit,	29
migrations	of,	123–132

search	engines,	138
security,	139
servers

maintenance	of,	94
processing	on,	67

service-oriented	architecture,	7
services,	136

and	security,	139
decomposing	database	layer	into,	151
decoupling	between	databases	and,	7
over	HTTP,	7

sessions
affinity,	52
consistency	of,	52,	63
expire	keys	for,	85
management	of,	133
sticky,	52
storing,	57,	87

sharding,	37–38,	40,	149
and	performance,	39
and	resilience,	39
auto,	39
by	customer	location,	97
combining	with	replication,	43
in	key-value	databases,	86
in	MongoDB,	96
in	relational	databases,	8

shared	database	integration,	4,	6
shopping	carts

expire	keys	for,	85
inconsistency	in,	55
persistence	of,	133
storing,	87

shuffling,	70
SimpleDB,	99

inconsistency	window	of,	50
single	server	approach,	37–38

consistency	of,	53
no	partition	tolerance	in,	54
transactions	in,	53
version	stamps	in,	63

single-threaded	event	processors,	145
snapshots,	142–143
social	networks,	26,	120

relationships	between	nodes	in,	117
Solr	indexing	engine,	88,	137,	141
split	brain	situation,	53
SQL	(Structured	Query	Language),	5
SSTables	(Cassandra),	103
stale	data

in	cache,	50
in	indexes/search	engines,	138
reading,	56

standard	column	families	(Cassandra),	101
sticky	sessions,	52
storage	models,	13
Strozzi,	Carlo,	9
super	column	families	(Cassandra),	101–102
super	columns	(Cassandra),	101
system	transactions,	61

T
tables.	See	relational	databases,	relations	in
telemetric	data	from	physical	devices,	57
Terrastore	DB,	91,	94
timestamps

consistent	notion	of	time	for,	64
in	column-family	databases,	100
of	last	update,	63

transactional	memory	systems,	145
transactions,	50

ACID,	10,	19,	26,	28,	50,	56,	109,	114–115
across	multiple	operations,	92
and	performance,	53
atomic,	92,	104
business,	61
in	graph	databases,	28,	114–115
in	key-value	databases,	84,	88
in	RDBMS,	4,	26,	92

in	single	server	systems,	53
lack	of	support	in	NoSQL	for,	10,	61
multioperation,	88
open	during	user	interaction,	52
rolling	back,	4
system,	61

tree	structures,	117
triggers,	126
TTL	(Time	To	Live),	108–109
tuples	(RDBMS),	5,	13–14

U
updates

atomic,	50,	61
conditional,	48,	62–63
consistency	of,	47,	56,	61
lost,	47
merging,	48
timestamps	of,	63–64

user	comments,	98
user	preferences,	87
user	profiles,	87,	98
user	registrations,	98
user	sessions,	57

V
vector	clock,	64
version	control	systems,	126,	145

distributed,	48,	64
version	stamps,	52,	61–64
version	vector,	64
views,	126
virtual	columns,	126
Voldemort	DB,	10,	82

W
web	services,	7
websites

distributing	pages	for,	39
on	large	clusters,	149
publishing,	98
visitor	counters	for,	108

word	processors,	3

write	tolerance,	84
writes,	64

atomic,	104
conflicts	of,	47–48
consistency	of,	92
horizontal	scaling	for,	96
performance	of,	91
quorums	of,	58
separating	from	reads,	41
serializing,	47

X
XML	(Extensible	Markup	Language),	7,	146
XML	databases,	145–146
XML	Schema	language,	146
XPath	language,	146
XQuery	language,	146
XSLT	(Extensible	Stylesheet	Language	Transformations),	146

Z
ZooKeeper.	See	Apache	ZooKeeper

	Title Page
	Copyright Page
	Dedication Page
	Contents
	Preface
	Part I: Understand
	Chapter 1. Why NoSQL?
	Chapter 2. Aggregate Data Models
	Chapter 3. More Details on Data Models
	Chapter 4. Distribution Models
	Chapter 5. Consistency
	Chapter 6. Version Stamps
	Chapter 7. Map-Reduce

	Part II: Implement
	Chapter 8. Key-Value Databases
	Chapter 9. Document Databases
	Chapter 10. Column-Family Stores
	Chapter 11. Graph Databases
	Chapter 12. Schema Migrations
	Chapter 13. Polyglot Persistence
	Chapter 14. Beyond NoSQL
	Chapter 15. Choosing Your Database

	Bibliography
	Index

